Supplementary Information

Comparative Study of the Inverse versus Normal Bicontinuous Cubic Phases of the β -D-glucopyranoside Water-Driven Self-Assemblies Using Fluorescent Probes

N. Idayu Zahid,^a Osama K. Abou-Zied, ^{*b}N. A. Nabila Saari,^a and Rauzah Hashim^a

^aDepartment of Chemistry, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia ^bDepartment of Chemistry, Faculty of Science, Sultan Qaboos University, P.O. Box 36, Postal Code 123, Muscat, Sultanate of Oman

*Corresponding Author: Osama K. Abou-Zied (E-mail: <u>abouzied@squ.edu.om</u>)

Table of Contents

¹ H NMR and ¹³ C NMR data for the β -Glc-OC ₁₀ C ₆	2
X-ray investigation of β -Glc-OC ₁₀ C ₆ and β -Glc-OC ₈ (Fig. S1)	3
Absorption spectra of HBO in different solvents (Fig. S2)	1
Fluorescence spectra of HBO in different solvents (Fig. S3)	1
Fluorescence decay transients of HBO in lipids (Fig. S4)	5
Fluorescence lifetime measurements of HBO and its derivatives in lipids (Table S1)	5
References ·····	5
¹ H NMR and ¹³ C NMR spectra for the β -Glc-OC ₁₀ C ₆	5

¹H NMR and ¹³C NMR for the 2-hexyl-decyl-β-D-glucopyranoside, β-Glc-OC₁₀C₆

¹H NMR (400 MHz, CD₃OD): δ (ppm) = 4.22 (d, 1H, H-1), 3.86 (dd, 1H, H-αa), 3.81 (dd, 1H, H-6a), 3.68 (dd, 1H, H-6b), 3.25-3.41 (m, 4H, H-αb, H-3, H-4, H-5), 3.18 (dd~t, 1H, H-2), 1.60 (m_c, 1H, β-CH₂), 1.29 (m_c, 24H, CH₂), 0.90 (t, 6H, CH₃).

 ${}^{3}J_{1,2} = 8.0$ Hz, ${}^{2}J_{6a,6b} = 12.0$ Hz, ${}^{2}J_{\alpha a,\alpha b} = 12.0$ Hz, ${}^{3}J_{\alpha a,\beta}$ -CH2 = 2.5 Hz.

PENDANT ¹³C NMR (400 MHz, CD₃OD): δ (ppm) = 103.41 (C-1), 76.81 (C-3), 76.49 (C-4), 73.79 (C-2), 72.68 (C- α), 70.31 (C-5), 61.43 (C-6), 38.22 (CH), 22.46-31.76 (CH₂), 13.23 (CH₃).

Fig. S1 X-ray investigation of 2-hexyl-decyl- β -D-glucopyranoside (β -Glc-OC₁₀C₆) and octyl- β -D-glucopyranoside (β -Glc-OC₈): (a) partial binary phase diagram of β -Glc-OC₁₀C₆, (reprinted with permission from Zahid et al. [1] Copyright (2013) American Chemical Society); (b) binary phase diagram of β -Glc-OC₈, (reprinted with permission from Sakva et al. [2] Copyright (1997) Taylor and Francis); (c) small-angle X-ray scattering pattern at 20 % (w/w) water content of β -Glc-OC₁₀C₆/water system (unpublished result from reference [1]) and (d) schematic cartoon representations of inverse (Type II) and normal (Type I) *Ia*3*d* bicontinuous cubic phases. In the inverse phase the bicontinuous network region are filled with water while the lipid chains occupy the matrix region. Conversely, in Type I, the network region is hydrophobic, filled with the lipid tails, while the intermediate space is filled with the hydrophilic sugar heads and water.

Fig. S2 Absorption spectra of HBO in different solvents, showing the lowest-energy band. Taken from reference [3].

Fig. S3 Fluorescence spectra of HBO in different solvents. $\lambda_{ex} = 330$ nm. Taken from reference [3].

Fig. S4 Fluorescence decay transients of HBO in inverse cubic phase (β -Glc-OC₁₀C₆) and normal cubic phase (β -Glc-OC₈). The decay transient of HBO in buffer of pH 12.0 is included for comparison. $\lambda_{ex} = 380$ nm. Signal was measured using a 400 nm long-path filter. IRF is shown in a dashed line. Black solid lines represent the best fits.

	Lifetime, τ		
Probe	${\tau_1}^a$ Keto	$\tau_2{}^b$ Anion	τ ₃ ^c Solvated <i>syn</i> - enol
Inverse cubic			
HBO		1.6 (0.19)	9.4 (0.81)
HBO-C ₄		0.9 (0.30)	6.5 (0.70)
HBO-C ₈		1.4 (0.21)	7.2 (0.79)
Normal cubic			
HBO	5.3 (0.58)	0.9 (0.42)	
HBO-C ₄	5.2 (0.52)	1.1 (0.48)	
HBO-C ₈	5.0 (0.52)	1.0 (0.48)	

Table S1. Fluorescence lifetime measurements of HBO and its derivatives in inverse cubic phase (β -Glc-OC₁₀C₆) and normal cubic phase (β -Glc-OC₈)

Uncertainty in measurements is ^a \pm 0.2 ns; ^b \pm 0.1 ns; ^c \pm 0.2 ns. Relative contributions are listed in parentheses. $\lambda_{ex} = 380$ nm. Emission was detected using a 400 nm long-path filter.

References

- [1] N. I. Zahid, C. E. Conn, N. J. Brooks, N. Ahmad, J. M. Seddon and R. Hashim, *Langmuir*, 2013, **29**, 15794–15804.
- [2] P. Sakya and J. Seddon, *Liq. Cryst.*, 1997, **23**, 409–424.
- [3] O. K. Abou-Zied, N. I. Zahid, M. F. Khyasudeen, D. S. Giera, J. C. Thimm and R. Hashim, *Sci. Rep.*, 2015, **5**, 8699.

¹H NMR

PENDANT¹³C NMR

