Supporting Information

Seedless synthesis of gold nanorods using dopamine as a reducing agent

Anton Liopo, Shaowei Wang, Paul J. Derry, Alexander A. Oraevsky, and Eugene R. Zubarev*

Synthesis of gold nanorods by seedless method with hydroquinone

Gold nanorods were prepared by mixing CTAB (5.00 mL, 0.2 M), HAuCl₄ (5.00 mM, 1.0 mM), AgNO₃ (50 μ L, 100 mM) and hydroquinone (250 μ L, 100 mM). After that, the reaction was started by adding 15 μ L freshly prepared 0.01 M NaBH₄ solution. The mixed solution was stirred for a short time and left undisturbed at 28 °C for measuring kinetics and growth of AuNRs.

Figure S1. UV- Vis spectra of AuNRs synthesized by reduction with dopamine (DA) using different addition orders. a.) DA+DA; b.) H_2O+DA ; c.) DA+H_2O. Final concentrations of preparative parameters: [CTAB] = 22 mM, [DA] = 45 mM, [HAuCl_4] =0.45 mM, [AgNO_3] = 0.91 mM, and [NaBH_4] = 0.018 mM. Reagent stock solutions are: [CTAB] = 5 mL/50 mM; [DA] = 0.5 mL/0.5 M (Twice), or 45 mM; [HAuCl_4] =5 mL/1 mM; [AgNO_3] = 0.1 mL/100 mM, and [NaBH_4] =0.02 mL/10 mM. Total volume is 11 mL.

Figure S2. UV-Vis spectra of AuNRs synthesized at different temperatures: a) 25 °C; b) 30 °C; c) 40 °C. Final reagent concentrations: [CTAB] = 22 mM, [DA] = 27 mM, $[HAuCl_4] = 0.45 \text{ mM}$, $[AgNO_3] = 0.91 \text{ mM}$, and $[NaBH_4] = 0.018 \text{ mM}$ and the total volume is 33 mL. Reagent stock solutions: [CTAB] = 15 mL/50 mM; [DA] = 1.5 mL/0.3 M, or 27 mM; $[HAuCl_4] = 15 \text{ mL/1 mM}$; $[AgNO_3] = 0.3 \text{ mL}/100 \text{ mM}$, [DA] = 1.5 mL/0.3 M and $[NaBH_4] = 0.03/10 \text{ mM}$. Total volume is 33 mL.

Figure S3. UV-vis spectra collected after 24 hours while varying the HAuCl₄ concentration. a) 0.112 mM b) 0.225 mM c) 0.45 mM d) 0.900 mM. All spectra are normalized at their transverse surface plasmon resonance wavelength. Final reagent concentrations: [CTAB] 22 mM, [DA] = 45 mM, [HAuCl₄] = varied, [AgNO₃] = 0.91 mM, and [NaBH₄] = 0.018 mM. Reagent stock solutions: [CTAB] = 5 mL/0.05; [DA] = 0.5 mL/0.50 mM; [HAuCl₄] 5 mL from 0.25 mM (a); 0.5 mM (b); 1 mM (c); and 2 mM (d); [AgNO₃] = 0.10 mL/100 mM; [DA] = 0.5 mL/0.5 M and [NaBH₄] = 0.02/10 mM. Total volume is 11 mL

Figure S4. UV-vis spectra after 24 h of growth with variable concentration of HCl: a) 0 μ M, b) 1.0 μ M, c) 2.0 μ M d) 4.0 μ M. All spectra are normalized at their transverse surface plasmon resonance wavelength. Final reagent concentrations: [CTAB] 25 mM, [DA] = 45 mM, [HAuCl₄] =0.45 mM, [AgNO₃] = 0.91 mM, and [NaBH₄] = 0.018 mM. Reagent stock solutions: [CTAB] = 5 mL/0.05 M; [DA] = 0.5 mL/0.50 mM; [HAuCl₄] 5 mL/1mM; [AgNO₃] = 0.10 mL/100 mM; [DA] = 0.5 mL/0.5 M and [NaBH₄] =0.02/10 mM. HCl were added 0, 10, 20 and 40 μ L from 10 % (~1.19 M) solution.

Figure S5. UV-Vis spectra after 4 h of AuNRs growth with different concentrations of NaBH₄: a) 0 μ M, b) 4.5 μ M, c) 9.0 μ M d) 4.0 μ M. All spectra are normalized at their transverse surface plasmon resonance wavelength. Final reagent concentrations: [CTAB] 25 mM, [DA] = 45 mM, [HAuCl₄] =0.45 mM, [AgNO₃] = 0.91 mM. Reagent stock solutions: [CTAB] = 5 mL/0.05 M; [DA] = 0.5 mL/0.50 mM; [HAuCl₄] 5 mL/1mM; [AgNO₃] = 0.10 mL/100 mM; [DA] = 0.5 mL/0.5 M and [NaBH₄] were added 0, 5, 10, 15, 20 and 40 μ L from 10 mM, ice-cold solution.

Figure S6. UV-Vis spectra of AuNRs prepared with different concentrations of silver nitrate: $[AgNO_3] = 0.091$, 0.182, 0.364, and 0.909 mM, or lines a,b,c,d, respectively. Final reagent concentrations: [CTAB] 25 mM (Fig. S2A) and 100 mM (Fig. S2B), [DA] = 45 mM, $[HAuCl_4] = 0.45 \text{ mM}$, and $[NaBH_4] = 0.018 \text{ mM}$. Reagent stock solutions: [CTAB] = 5 mL/0.05 or 0.20 M; [DA] = 0.5 mL/0.5 M; $[HAuCl_4] = 5 \text{ mL}/1 \text{ mM}$; $[AgNO_3] = a$) 0.05 mL/20 mM, b) 0.10 mL/20 mM; c) 0.20 mL/20 mM; d) 0.10 mL/100 mM; [DA] = 0.5 mL/0.50 mM; [DA] = 0.5 mL/0.50 mM; [DA] = 0.02/10 mM. Total volume is 11 mL.

Figure S7. TEM images of gold nanorods GNRs synthesized by reduction with dopamine in different protocol modifications. All synthesis has total volume 11 mL.

Figure S8. TEM image of AuNRs synthesized at medium CTAB concentration (90 mM). Other parameters: [DA] = 45 mM, $[HAuCl_4] = 0.45 \text{ mM}$, $[AgNO_3] = 1.82 \text{ mM}$, and $[NaBH_4] = 0.018 \text{ mM}$. Reagent stock solutions: [CTAB] = 5 mL/200 mM; [DA] = 0.5 mL/0.5 M; $[HAuCl_4] = 5 \text{ mL}/1 \text{ mM}$; $[AgNO_3] = 0.2 \text{ mL}/100 \text{ mM}$, [DA] = 0.5 mL/0.5 M; and $[NaBH_4] = 0.02 \text{ mL}/10 \text{ mM}$. Total volume is 11 mL.

Figure S9. TEM image of AuNRs synthesized at high CTAB concentration (180 mM). Other parameters: [DA] = 45 mM, $[HAuCl_4] = 0.45 \text{ mM}$, $[AgNO_3] = 1.82 \text{ mM}$, and $[NaBH_4] = 0.018 \text{ mM}$. Reagent stock solutions: [CTAB] = 5 mL/200 mM; [DA] = 0.5 mL/0.5 M; $[HAuCl_4] = 5 \text{ mL}/1 \text{ mM}$; $[AgNO_3] = 0.2 \text{ mL}/100 \text{ mM}$, [DA] = 0.5 mL/0.5 M; and $[NaBH_4] = 0.02 \text{ mL}/10 \text{ mM}$. Total volume is 11 mL.