Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2015

Electronic Supplementary Information

Zn(II) complex with 2-quinolinecarboxaldehyde selenosemicarbazone: synthesis, structure, interaction studies with DNA/HSA, molecular docking and caspase-8 and -9 independent apoptose induction

Nenad R. Filipović^a, Snežana Bjelogrlić^b, Aleksandar Marinković^c, Tatjana Ž. Verbić^d, Ilija N. Cvijetić^e, Milan Senćanski^f, Marko Rodić^g, Miroslava Vujčić^h, Dušan Sladić^d, Zlatko Striković^d, Tamara R. Todorović,^{d*} Christian D. Muller^{i,j*}

 ^a Deptartment of Chemistry and Biochemistry, Faculty of Agriculture, University of Belgrade, Nemanjina 6, Belgrade, Serbia; ^bNational Cancer Research Center of Serbia, Pasterova 14, Belgrade, Serbia; ^cFaculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, Belgrade, Serbia; ^dFaculty of Chemistry, University of Belgrade, Studentski trg 12-16, Belgrade, Serbia; ^e Innovation Center of the Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, Belgrade, Serbia, ^fCenter for Multidisciplinary Research, Institute of Nuclear Sciences Vinča, University of Belgrade, Belgrade, Serbia; ^gDepartment of Chemistry, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 4, Novi Sad, Serbia; ^hInstitute of Chemistry, Technology and Metallurgy, University of Belgrade, Njegoševa 12, Belgrade, Serbia; ⁱLaboratoire d'Innovation Thérapeutique, UMR 7200, Faculté de Pharmacie, Université de Strasbourg, 67401 Illkirch, France; ^jPlateforme eBioCyt, Faculté de Pharmacie & Féderation Translationnelle de Médecine, Université de Strasbourg, 67401 Illkirch, France.

*Corresponding authors:

Dr. Tamara R. Todorović E-mail: tamarat@chem.bg.ac.rs Tel: +381 11 3336-685 Fax: +381 11 2184-330

Dr. Christian D. Muller E-mail: cdmuller@unistra.fr Tel: +33-688285839 Fax: +33-368854310

Content

Figure S1. Experimental and theoretical FT-IR spectra of 1	4
Figure S2 . ¹ H NMR spectrum of 1 in DMSO- d_6	5
Figure S3 . ¹³ C NMR spectrum of 1 in DMSO- d_6	5
Figure S4. COSY spectrum of 1	6
Figure S5. NOESY spectrum of 1	6
Figure S6. ¹ H– ¹³ C HSQC spectrum of 1	7
Figure S7. ¹ H– ¹³ C HMBC spectrum of 1	7
Figure S8. Superimposed ¹ H and ¹³ C NMR spectra of Hqasesc and 1	8
Figure S9. Superimposed ¹ H NMR spectra of freshly prepared sample of 1 and	
sample after 24 h	9
Figure S10. Cyclic voltammograms of Hqasesc, 1, and 1 with addition of zinc	
perchlorate	9
Figure S11. UV/Vis spectra of Hqasesc in pH range 1.65–5.17 and determination of	
<i>K</i> _{a1} at 341 nm.	10
Figure S12. UV/Vis spectra of Hqasesc in pH range 5.17–11.91 and determination	
of <i>K</i> _{a2} at 365 nm	10
Figure S13. Packing diagram in the crystal structure of Hqasesc	11
Figure S14. Packing diagram in the crystal structure of 1	11
Figure S15. Sigmoidal dose-response curves with ED50 values for Hqasesc, 1 and	
CDDP on THP-1 and AsPC-1 cells	13
Figure S16 . Stern-Volmer plot of F_0/F vs. [Q] at three different temperatures	14
Figure S17. Modified Stern-Volmer plot for binding of 1 to HSA at three	
temperatures	14
Figure S18. The plot of $\ln K_a$ vs. $1/T$ for the interaction of 1 with HSA	15
Figure S19. Double-log plot for determination of binding constants K_b , and the	
number of binding sites <i>n</i> at three temperatures	15
Figure S20. Spectral overlap of the complex 1 absorption with HSA fluorescence	
emission	16
Figure S21. All conformations of 1 in the DNA duplex	16
Figure S22. Structure of HSA and the location of complex 1 binding site	17
Scheme S1. Numbering of atoms of Hqasesc in 1	4

Table S1 . Hydrogen bonding geometry (Å, °) in Hqasesc and 1	12
Table S2 . Interactions of HSA binding site atoms with 1	18
References	18

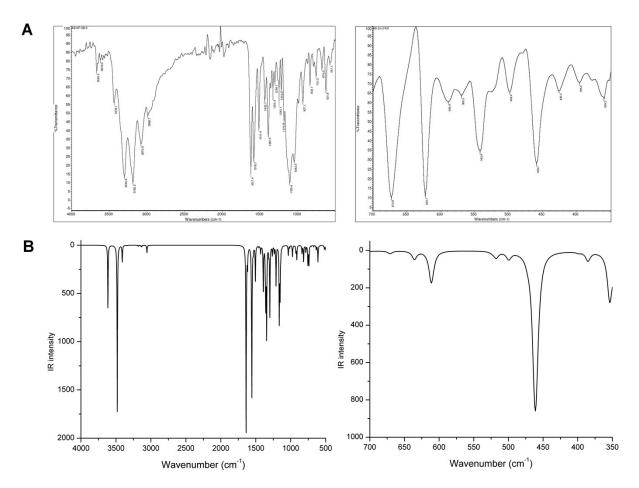
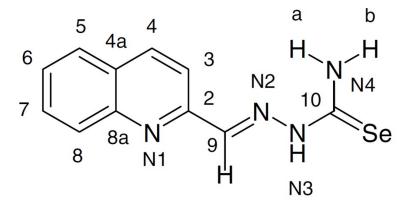



Figure S1. Experimental (A) and theoretical (B) FT-IR spectra of 1.

Scheme S1. Numbering of atoms of Hqasesc in 1, used in NMR.

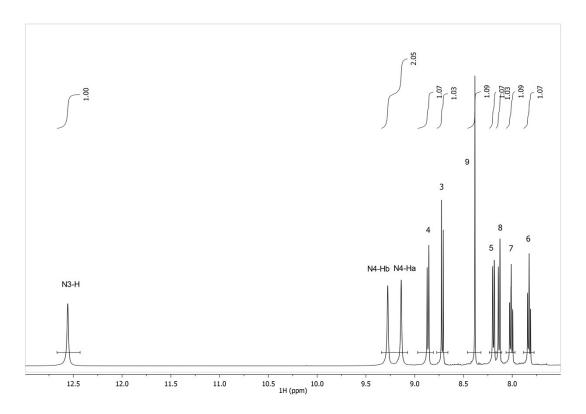


Figure S2. ¹H NMR spectrum of 1 in DMSO- d_6 .

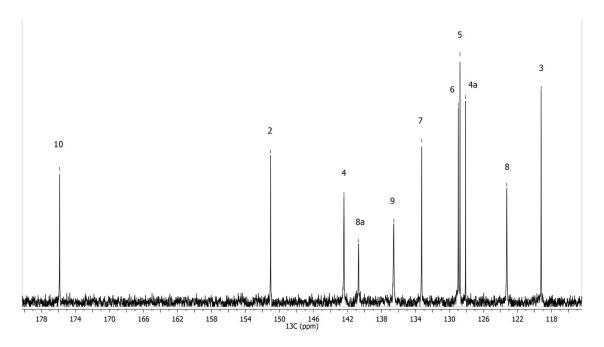


Figure S3. ¹³C NMR spectrum of 1 in DMSO- d_6 .

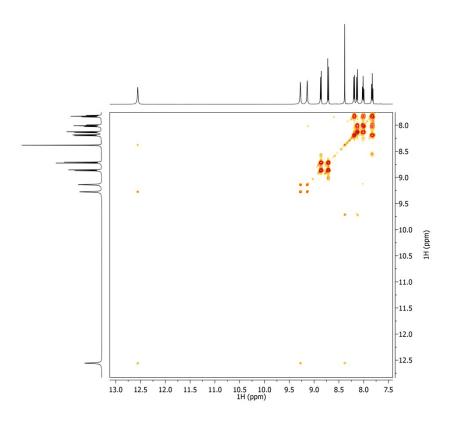


Figure S4. COSY spectrum of 1.

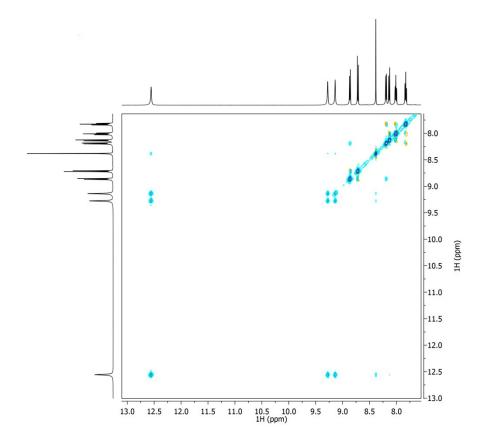


Figure S5. NOESY spectrum of 1.

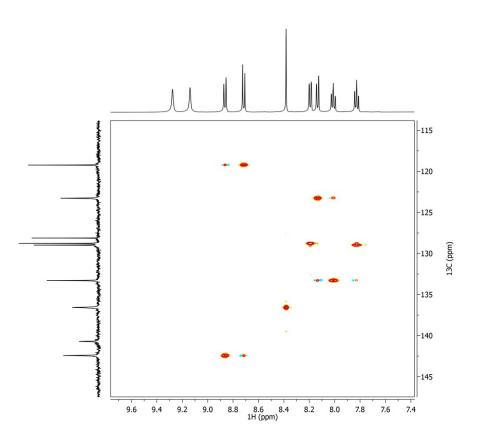


Figure S6. ¹H–¹³C HSQC spectrum of 1.

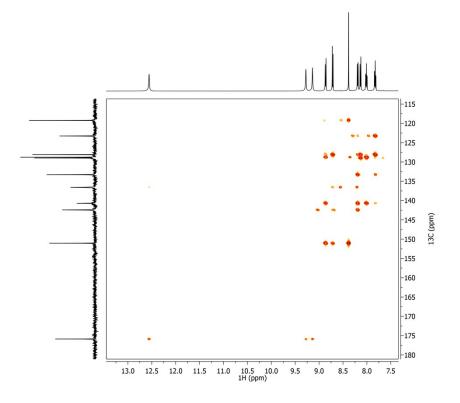


Figure S7. ¹H–¹³C HMBC spectrum of 1.

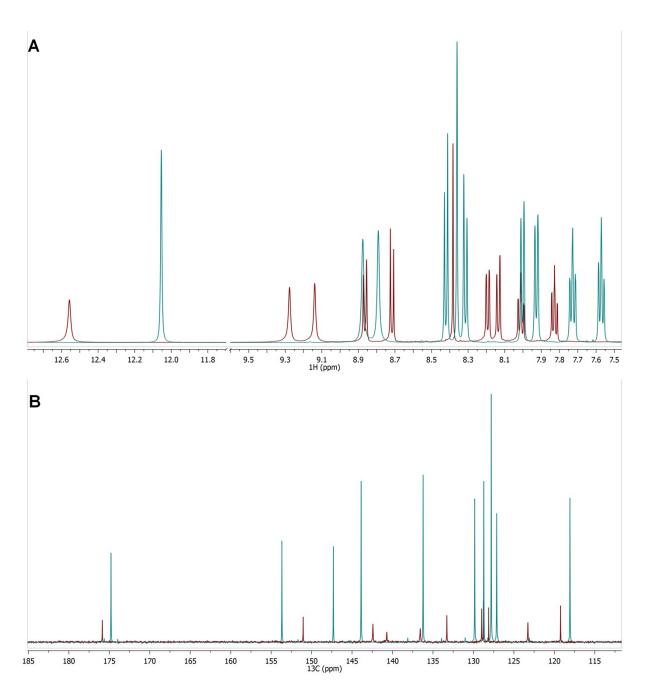
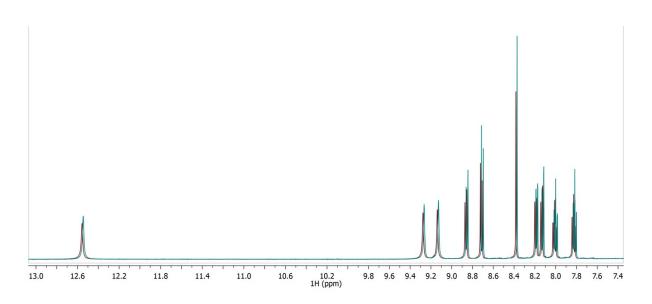



Figure S8. Superimposed ¹H (A) and ¹³C NMR spectra (B) of Hqasesc (cyan) and 1 (red).

Figure S9. Superimposed ¹H NMR spectra of freshly prepared sample of **1** (cyan) and sample after 24 h (red).

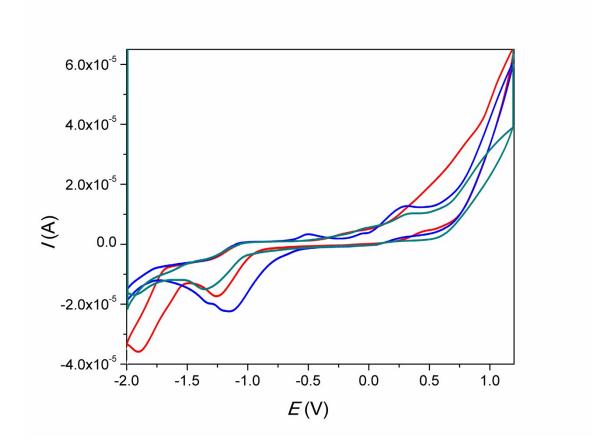


Figure S10. Cyclic voltammograms of Hqasesc (cyan), 1 (blue), and 1 with addition of zinc perchlorate (red) in anhydrous DMSO containing 0.10 M [*n*-Bu₄N][PF₆] at a scan rate of 100 mV s⁻¹ using a glassy carbon working electrode.

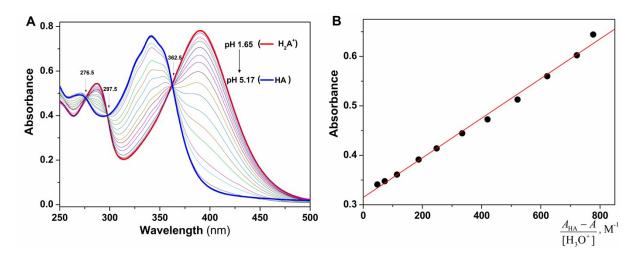


Figure S11. (A) UV-Vis spectra of Hqasesc in pH range 1.65–5.17 used for pK_{a1} determination (t = 25 °C); The spectra were recorded at following pH values: 1.65, 1.83, 2.06, 2.46, 2.71, 3.03, 3.17, 3.33, 3.67, 3.84, 4.13, 4.30, 5.17; Spectra of pure H₂A⁺, and HA forms and isosbestic points are indicated. (B) Determination of K_{a1} at 341 nm according to equation **2**; slope = 4.01×10^{-4} , intercept = 0.315, $r^2 = 0.993$.

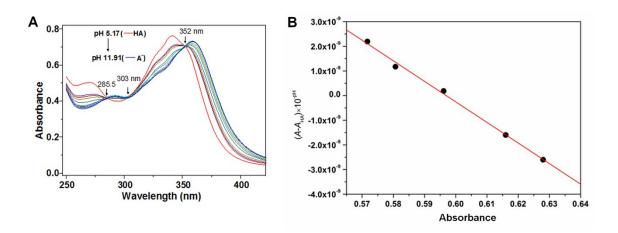


Figure S12. (A) UV/Vis Spectra of Hqasesc in pH range 5.17–11.91 used for pK_{a2} determination (t = 25 °C); The spectra were recorded at following pH values: 5.17, 6.56, 7.01, 7.32, 7.65, 8.06, 8.82, 11.91; Spectra of pure HA and A⁻ forms and isosbestic points are indicated. (B) Determination of K_{a2} at 365 nm according to equation 3**a**; slope = -8.34×10^{-8} , intercept = 4.97×10^{-8} , $r^2 = 0.995$.

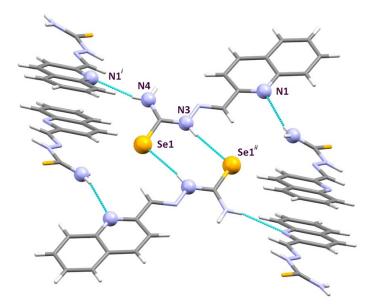


Figure S13. Packing diagram in the crystal structure of Hqasesc.

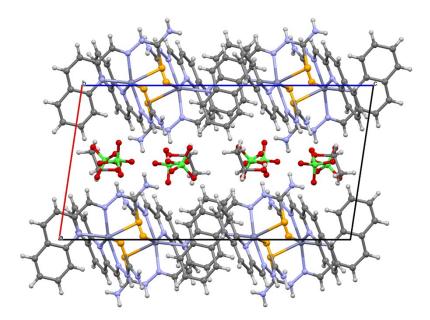


Figure S14. Packing diagram in the crystal structure of 1.

<i>D</i> –H··· <i>A</i>	D-H	Н…А	$D \cdots A$	D–H··· A
Hqasesc				
N4–H4 A ····N1 ^{<i>i</i>}	0.77(4)	2.45(4)	3.198(3)	163(3)
N3–H3····Se1 ^{<i>ii</i>}	0.86(3)	2.68(3)	3.533(2)	172(3)
1				
N3–H3…O3	0.866(18)	2.39(3)	3.082(4)	137(3)
N4–H4 <i>A</i> …O3	0.86	2.58	3.259(5)	137.1
N4–H4 A ····O9 A^i	0.86	2.49	3.041(5)	122.7
N4–H4 A ····O9 B^i	0.86	2.49	2.970(8)	116.3
N4–H4 B ····O4 ^{<i>i</i>}	0.86	2.48	3.164(5)	137.3
N3A-H3A···O9 A^{ii}	0.846(18)	2.01(2)	2.802(4)	155(4)
N3A-H3A····O9 B^{ii}	0.846(18)	1.97(2)	2.795(7)	163(4)
N4 <i>A−</i> H4 <i>C</i> ···O7 ^{<i>iii</i>}	0.86	2.34	3.017(5)	135.4
N4 A –H4 C ···O9 A^{ii}	0.86	2.35	3.085(5)	143.4
N4A–H4D…Se1 ⁱⁱⁱ	0.86	2.67	3.447(3)	150.1
O9A−H9A1…O7 ^{iv}	0.82	2.19	2.955(8)	156.1
O9 <i>B</i> −H9 <i>B</i> ···O1	0.82	2.08	2.818(11)	150.1

Table S1. Hydrogen bonding geometry (Å, °) in Hqasesc and 1.

Symmetry codes for Hqasesc: (*i*) x - 1/2, -y + 3/2, z - 1/2; (*ii*) -x + 1, -y + 2, -z + 1. Symmetry codes for 1: (*i*) -x + 1, y + 1/2, -z + 1/2; (*ii*) -x, y + 1/2, -z + 1/2; (*iii*) -x, y - 1/2, -z + 1/2; (*iv*) x, y - 1, z.

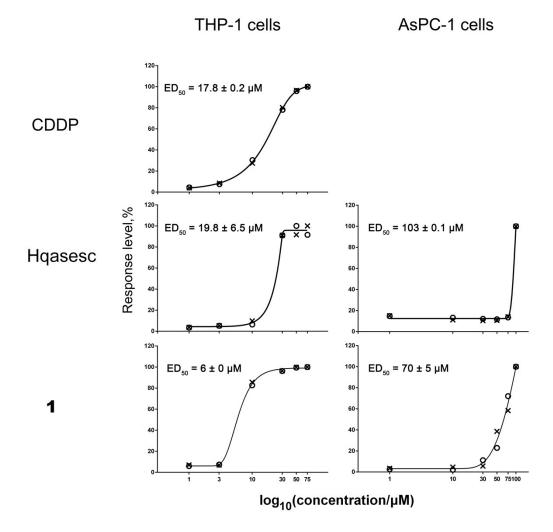
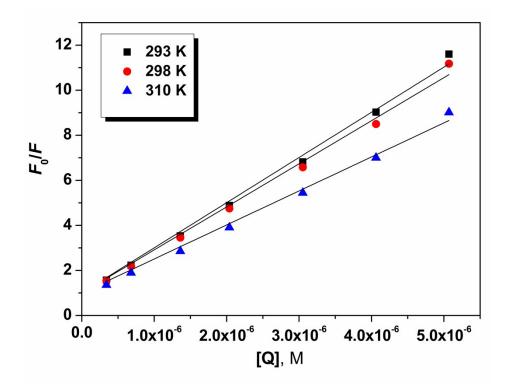



Figure S15. ED50 values for Hqasesc, 1 and CDDP on THP-1 and AsPC-1 cells. THP-1 and AsPC-1 cells were treated with Hqasesc, 1 and CDDP applied in a range of six concentrations for 24 h, and afterwards stained with Annexin-V and PI. Percentages of all Annexin-V labeled cells for each concentration of investigated compounds were calculated as a proportion of the maximal apoptotic response normalized as 100%. Such scaled apoptotic outcomes were plotted against concentrations and ED₅₀ concentration was calculated using asymmetric sigmoidal curve five-parameter logistic equation (GraphPad Prism 6 software).

Figure S16. Stern-Volmer plot of F_0/F vs. [Q] at three different temperatures, where F_0 and F represents HSA fluorescence intensities in absence (F_0) and in presence of the quencher (F), and [Q] is the concentration of the quencher (1).

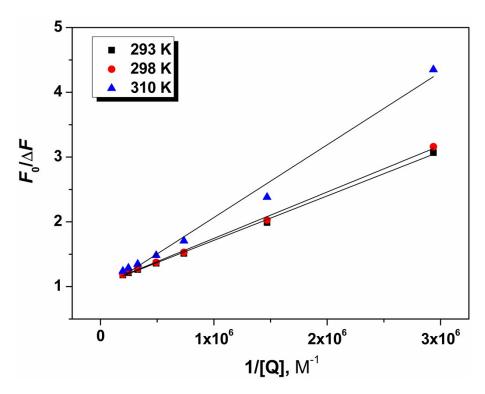


Figure S17. Modified Stern-Volmer plot for binding of 1 to HSA at three temperatures.

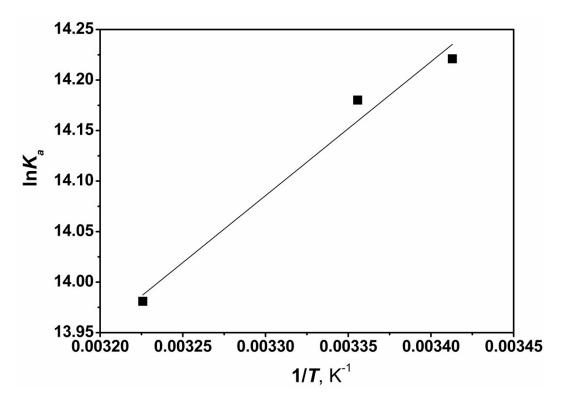


Figure S18. The plot of $\ln K_a$ (K_a given in M⁻¹) vs. 1/T for the interaction of 1 with HSA.

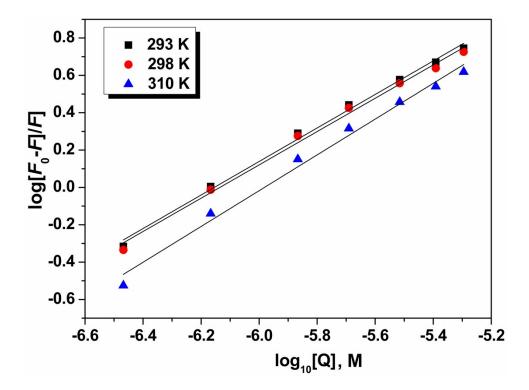
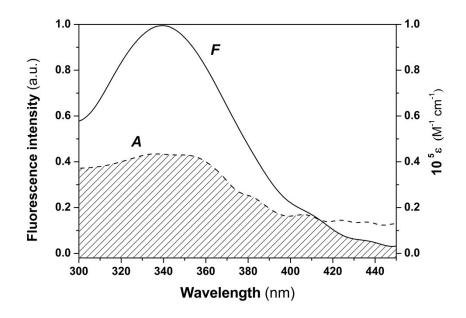



Figure S19. Double-log plot for determination of binding constants K_b , and the number of binding sites *n* at three temperatures; Concentration of quencher, [Q] is given in M.

Figure S20. Spectral overlap of complex 1 absorption (curve *A*, dashed line) with HSA fluorescence emission (*F*, solid line); $c(\text{HSA}) = c(1) = 5 \times 10^{-7} \text{ M}$; T = 298 K.

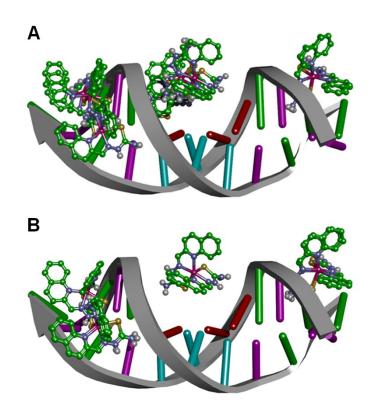


Figure S21. All conformations of complex 1 in the DNA duplex of sequence $d(CGCGAATTCGCG)_2$ from PDB IDs $3U2N^{S1}$ (A) and $4U8A^{S2}$ (B).

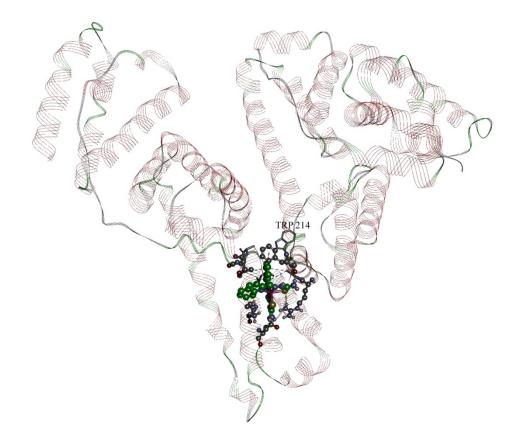


Figure S22. Structure of HSA (PDB ID 1BJ5^{S3}) and the location of complex 1 binding site.

Residue (atom)	Interaction type	Distance
Glu 354 (OE1)	Hydrogen bond/electrostatic	2.089
Glu 354 (OE1)	Hydrogen bond/ electrostatic	2.726
Phe 206 (O)	Hydrogen bond	1.987
Ala 210	Hydrophobic CH– <i>π</i>	4.639
Ala 210	Hydrophobic CH– <i>π</i>	3.725
Leu 347	Hydrophobic CH– <i>π</i>	4.968
Lys 351	Hydrophobic CH– <i>π</i>	5.074
Leu 481	Hydrophobic CH– <i>π</i>	4.903
Val 482	Hydrophobic CH– <i>π</i>	4.814
Val 482	Hydrophobic CH– <i>π</i>	5.247
Phe 206	Hydrophobic / π – π	4.603
Arg 209 (NH1) – Se	Hydrogen bond	2.749

Table S2. Interactions of HSA binding site atoms with 1.

References

- S1 D.G. Wei, W.D. Wilson and S. Neidle, J. Am. Chem. Soc., 2013, 135, 1369–1377.
- S2 W. Zhu, Y. Wang, K. Li, J. Gao, C.H. Huang, C.C. Chen, T.P. Ko, Y. Zhang, R.T. Guo and E. Oldfield, *J. Med. Chem*, 2015, 58, 1215–1227.
- S3 S. Curry, H. Mandelkow, P. Brick and N. Franks, *Nat. Struct. Biol.*, 1998, 5, 827–835.