Supporting Information

"Novel Metal Chelators Thiosemicarbazones with Activity at the σ_2 Receptors and P-

glycoprotein: an Innovative Strategy for Resistant Tumors Treatment".

Authors: Maria Laura Pati,^{‡,§,†} Mauro Niso,^{‡,†} Savina Ferorelli,[‡] Carmen Abate,^{‡,*} Francesco

Berardi[‡]

[‡]Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari ALDO MORO, Via Orabona 4, I-70125 Bari, Italy [§]Division of Hepatobiliary, Pancreatic, and Gastrointestinal Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA [†]Equally contributing authors

Table of contents

Synthesis of intermediate compounds **3**; Ferrozine assay with compound **7a** and **7b** (Figure S1); Description of Detection of ROS by DCF assay and corresponding figure (Figure S2).

1-(4-chlorobutyl)indoline-2,3-dione (3) To a solution of Isatin (2.0 g, 13.59 mmol) in CH₃CN (20 mL), K₂CO₃ (3.76 g, 27.18 mmol) and 1-bromo-4-chlorobutane (1.72 mL, 14.95 mmol) were added and the mixture was refluxed for 4h. After the removal of the solvent under reduced pressure the residue was taken up with H₂O and extracted with AcOEt (3 × 15 mL). The collected organic layers were dried (Na₂SO₄) and evaporated under reduced pressure. The resulting crude residue was obtained as an oil which was purified by column chromatography (CH₂Cl₂/AcOEt 95:5) to give the title compound as thick red oil (2.95 g, 90% yield). ¹H NMR (300 MHz, CDCl₃) δ 1.25-1.86 (m, 4H, NCH₂CH₂CH₂), 3.59 (t, 2H, *J* = 6.0 Hz, CH₂Cl), 3.76 (t, 2H, *J* = 6.6 Hz, NCH₂), 6.92 (d, 1H, *J* = 8.0 Hz, aromatic), 7.12 (t, 1H, *J* = 7.5 Hz, aromatic), 7.56-7.61 (m, 2H, aromatic); GC-MS *m/z* 239 (M⁺ + 2, 10), 237 (M⁺, 30), 132 (100).

Supplemental Figure 1. FeSO₄ curve (0.5 μ M – 25 μ M) in the presence of ferrozine (100 μ M) alone or with tested compound (100 μ M) at UV/Vis spectrophotometer. Absorbance at $\lambda = 562$ nm is reported for representative compounds **7a** and **7b**.

Detection of ROS by DCF assay.¹ On day 1, 25,000 cells/well were seeded into 96-well plates in a volume of 100 μL. On day 2, 10 μM of compounds, alone or in combination with 100 μM of α-tocopherol, was added. In all the experiments, the various drug-solvents (EtOH, DMSO) were added in each control to evaluate a possible solvent cytotoxicity. After the established incubation time with drugs (24 h), 5-(and-6)-carboxy-2',7'-dichlorodihydro-fluorescein diacetate (carboxy-H₂DCFDA) (25 μM) was added to each well, and after 30 min incubation at 37 °C, the supernatant was removed and wells were washed once with PBS. The oxidative product of carboxy-H₂DCFDA to 2',7'-dichloro-fluorescein (DCF) was determined on the microplate reader Victor 3 from PerkinElmer Life Sciences (485 nm excitation and 530 nm emission).

Supplemental Figure 2. Increase of DCF signal upon treatment of A549 cells with compounds 7a and 7b (10 μ M) alone or in the presence of α -tocopherol (100 μ M).

1) J. R. Hornick, J. Xu, S. Vangveravong, Z. Tu, J. B. Mitchem, D. Spitzer, P. Goedegebuure, R. H. Mach, W. G. Hawkins, *Mol. Cancer*, 2010, **9**, 298.