Monolayer MoS₂ quantum dots as catalysts for efficient hydrogen evolution

Wen Qiao¹, Shiming Yan^{1, 2}, Xueyin Song¹, Xing Zhang¹, Yuan Sun¹, Xing Chen¹, Wei Zhong^{1*}, Youwei Du¹

Figure S1. SEM image of bulk MoS₂.

Figure S2. The content of MoS_2 nanosheets that less than 10 nm in lateral size varies with the exfoliation

numbers.

Figure S3. X-ray photoelectron spectra of the Mo 3d a) and S 2p b) regions of the MoS₂ QDs.

Figure S4. Raman spectra recorded using a 532 nm laser for bulk MoS₂ and MoS₂ QDs.

Figure S5. UV-vis spectra of M-1, M-2, M-3 MoS₂ nanosheets and MoS₂ QDs.

Calculation of Turn Over Frequency (TOF)

To calculate the per-site turn over frequency (TOF) for the MoS_2 catalysts, we use the geometry of a MoS_2 surface and the hydrogen evolution current density. The number of surface sites on the flat standard was calculated based on the geometry of MoS_2 . Previous experimental measurements of MoS_2 surfaces showed that the sulfur-sulfur bond distance is 3.15 Å. Based on the hexagonal arrangement of sulfur atoms at the MoS_2 surface, this corresponds to an area of 4.296 Å²/S atom, which is used to calculate the surface area occupied by each MoS_2 unit:

$$4.296\frac{\text{\AA}^2}{S} * \frac{2S}{1\,MoS_2} = 8.593\frac{\text{\AA}^2}{MoS_2}$$

This can be used to calculate the number of MoS_2 units (the number of surface sites for the flat standard) per cm² geometric area:

$$\frac{1 MoS_2}{8.593 \text{\AA}^2} * \frac{10^{16} \text{\AA}^2}{cm^2} = 1.164 * 10^{15} \frac{MoS_2}{cm^2}$$

The approximation is reasonable given that the MoS_2 materials have a surface site density close to 10^{15} sites/cm².

Turn-over frequencies are calculated from the current densities using the following relation:

TOF $(s^{-1}) = (j, A/cm^2) / [(1.164 \times 10^{15} \text{ sites/cm}^2) (1.602 \times 10^{-19} \text{ C/e}) (2 \text{ e}^{-}/\text{H}_2)]$

Figure S6. AC impedance spectroscopy study of various MoS₂ catalysts performed in the same configuration

from 10⁶-0.01 Hz with an AC voltage of 5 mV.