Clay/CoAl₂O₄ hybrid pigments: Effect of different clay minerals and calcination temperature on the morphology and color

Bin Mu^{a,b}, Qin Wang^{a,b}, Aiqin Wang^{a,b*}

^a Center of Eco-material and Green Chemistry, Lanzhou Institute of Chemical Physics,

Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China

^b Center of Xuyi Attapulgite Applied Technology, Lanzhou Institute of Chemical

Physics, Chinese Academy of Sciences, Xuyi 211700, P.R. China

^{*} Corresponding author. Tel.: +86 931 4968118; fax: +86 931 8277088. *E-mail:* aqwang@licp.cas.cn (A. Wang).

Composition Clay	Al ₂ O ₃	MgO	CaO	SiO ₂	K ₂ O	Fe ₂ O ₃
АРТ	10.47%	20.41%	1.29%	64.31%	0.13%	0.87%
I-S	18.27%	1.87%	0.23%	65.93%	3.15%	3.53%
MMT	17.14%	3.87%	0.46%	68.62%	1.62%	1.48%

Table S1 The composition of three clays determined by X-ray fluorescence

Fig. S1 Digital photographs of CoAl₂O₄ pigment: CoAl₂O₄-800, CoAl₂O₄-900,

 $CoAl_2O_4$ -1000, $CoAl_2O_4$ -1100, and $CoAl_2O_4$ -1200.

Fig. S2 Digital photographs of the natural APT and the calcined APT at different

temperatures.

Fig. S3 FTIR spectra of a) $CoAl_2O_4$ -800, b) $CoAl_2O_4$ -900, c) $CoAl_2O_4$ -1000, and d)

CoAl₂O₄-1200.

Fig. S4 FTIR spectra of a) the natural APT and the calcined APT at 800 °C (b) and

1000 °C (c).

Fig. S5 FTIR spectra of a) the calcined APT at 1000 °C, b) APT/CoAl₂O₄-1-1000, c)

APT/CoAl₂O₄-2-1000, and d) APT/CoAl₂O₄-3-1000.

Fig. S6 TEM images of (a) the natural APT and (b) the natural I-S.

Fig. S7 TEM images of (a) $APT/CoAl_2O_4$ -1-800 and (b) $APT/CoAl_2O_4$ -3-800.

Fig. S8 TGA curves of the natural I-S, the precursor, and I-S/CoAl₂O₄-1000.

Fig. S9 XRD patterns of the natural MMT and $MMT/CoAl_2O_4$ -1000.

Fig. S10 Digital photographs of the suspension of $CoAl_2O_4$ -1000

Fig. S11 Digital photographs of the suspension of the used three clays