
General requirements. 

Python
TM

 3.0 or higher is required to be installed on your computer (freely available 

from www.python.org). 

 

Input file. 

An input file for the program is SDF containing the following information for each 

representative of the library (see example provided): 

1. Structure in MDL Molfile format containing 3D coordinates of atoms. 

2. Compound Id 

3. Numbers of atoms V1, V2 (two variation points) and X1, X2 (substituents 

attached to them) in the above-mentioned MDL Molfile. These atoms are used 

to define vectors n1 and n2 necessary to calculate EVP parameters. 

There are two ways to define the direction of vector n1 (the same for n2): 

a) It can be colinear to vector V1X1, where X1 is exocyclic atom directly 

attached to the variation point V1 of the scaffold. This approach is 

commonly used if V1 is carbon or any other atom which is 

configurationally stable. In this case, the field <X1> of SDF contains a 

single value – the number of X1. 

b) They can be colinear to the bisector of the angle X1a–V1–X1b, where X1a 

and X1b– two atoms of the scaffold directly connected to the variation point 

V1. This approach is commonly used if V1 is nitrogen or other atom which 

is configurationally unstable. Therefore, the vector n1 defines an average 

orientation of the substituent attached to the variation point. In this case, the 

field <X1> of SDF contains two values separated by semicolon (;) – 

numbers of atoms X1a and X1b. 

 

These data can be generated using any common chemoinformatics 

software. In particular, to generate example file, we have imported MOL 

files with 3D coordinates for each compound into Instant JChem database, 

Electronic Supplementary Material (ESI) for RSC Advances.
This journal is © The Royal Society of Chemistry 2016

http://www.python.org/


and then filled the fields Id, V1, V2, X1, X2 manually using built-in atom 

numbering tools. Note that order of fields is important. 

See also an example provided. 

 

Running the program. 

1. Copy the file EVP.py into the directory where your SDF input is located. 

2. Double click on the file EVP.py. 

3. Enter the name of SDF with extension (SDF_example.sdf) 

4. Enter the number of compounds in SDF (9). 

5. Enter the name of the field containing Id of the compound (Id). 

6. The program creates file Results.txt with results. 

 

Calculation protocol. 

For each compound, the program does the following: 

1. Extracts 3D coordinates (x, y, z) of atoms V1, V2, X1 and X2 (or X1a,b and 

X2a,b, see above) using information available in SDF. 

2. Calculates coordinates of vector V1V2 (same as vector r) as following: 

xr = xV2 – xV1 

yr = yV2 – yV1 

zr = yV2 – yV1 

3. Calculates coordinates of vector n1 as following: 

a) if a single value is present in the field <X1>, then 

xn1 = xX1 – xV1 

yn1 = yX1 – yV1 

zn1 = yX1 – yV1 

b) if two values are present in the field <X1>, then 

xV1X1a = xX1a – xV1 

yV1X1a = yX1a – yV1 

zV1X1a = zX1a – zV1 



xV1X1b = xX1b – xV1 

yV1X1b = yX1b – yV1 

zV1X1b = zX1b – zV1 

xn1 = – 
      

√       
         

        
 

 – 
      

√       
         

        
 

 

yn1 = – 
      

√       
         

        
 

 – 
      

√       
         

        
 

 

zn1 = – 
      

√       
         

        
 

 – 
      

√       
         

        
 

 

4. Calculates coordinates of vector n2 by the same equations as described above for 

n1 (except V2 and X2 or X2a,b are used instead of V1 and X1 or X1a,b). 

5. Calculates parameter r using the following equation: 

r = √  
     

    
  

6. Calculates parameters 1 and 2: 

1 = 180 – arccos 
                 

  √   
      

     
 

 

2 = arccos 
                 

  √   
      

     
 

 

7. Calculates boolean parameter 1_2, which is true (1) if 1  2 and false (0) if 1 

< 2. 

8. Calculates parameter : 

xA1 = xn1 – 
                   )   

  
 

yA1 = yn1 – 
                   )   

  
 

zA1 = zn1 – 
                   )   

  
 

xA2 = xn2 – 
                   )   

  
 

yA2 = yn2 – 
                   )   

  
 

zA2 = zn2 – 
                   )   

  
 



 = arccos 
                      

√    
      

      
 )    

      
      

 ) 

 

9. Calculates the sign_ parameter (since the above calculation gives absolute 

value), sign_ = 1 if  > 0; 0 if  = 0; –1 if  < 0. 

sign_ = sign((zA2yA1 – yA2zA1)xr + (xA2zA1 – zA2xA1)yr + (yA2xA1 – xA2yA1)zr) 

 

Output format. 

The calculated data are exported to the TXT table with the following format of each 

line: 

Id r 1 2  1_2 sign_ 

The first line is a header of the table. 

NOTE: the results are sorted by ID value. 


