## **Electronic Supplementary information (ESI)**

Solvent assisted and solvent free orientation of growth of nanoscaled lanthanide sulfides: tuning of morphology and manifestation of photocatalytic behavior †

Abhisek Brata Ghosh,<sup>a</sup> Namrata Saha,<sup>a</sup> Arpita Sarkar,<sup>a</sup> Divesh N. Srivastava,<sup>b</sup> Parimal Paul,<sup>\*b</sup>

and Bibhutosh Adhikary\*a

<sup>a</sup>Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Howrah 711 103, West Bengal, India

<sup>b</sup>Department of Analytical Science, Central Salt & Marine Chemicals Research Institute, Gijubhai, Badheka Marg, Bhavnagar 364002, Gujarat, India

\*Corresponding author Tel: +91-3326684561 Ext. 512, Fax: +91-3326682916,

E-mail: <u>bibhutoshadhikary@yahoo.in</u>

[Nd(acda)<sub>3</sub>(phen)]. Anal. Calcd for C<sub>30</sub>H<sub>32</sub>N<sub>5</sub>NdS<sub>6</sub>: C, 45.04 ; H, 4.00 ; N, 8.76. Found: C, 45.38 ; H, 4.22; N, 8.61. IR data (KBr pellet, cm<sup>-1</sup>): 3356 (m, br), 2940 (s, br), 1604 (s), 1500 (s), 1452, 1311 (m), 1265 (m), 1145 (m), 1098 (m), 1034 (m), 912 (m), 849 (m), 804 (m), 726 (m). ESI-MS(positive) in MeOH: m/z 800.25 [Nd(acda)<sub>3</sub>(phen)H]<sup>+</sup> (32%). UV-vis [in *N*,*N*-dimethylformamide,  $\lambda_{max}$ , nm ( $\varepsilon$  / M<sup>-1</sup> cm<sup>-1</sup>)] 332 (13088), 384 (29556), 589 (640), 751(110), 807 (156), 878 (47).

[Sm(acda)<sub>3</sub>(phen)]. Anal. Calcd for C<sub>30</sub>H<sub>32</sub>N<sub>5</sub>SmS<sub>6</sub>: C, 44.70 ; H, 3.98 ; N, 8.69. Found: C, 43.97 ; H, 4.08; N, 8.56. IR data (KBr pellet, cm<sup>-1</sup>): 3353 (m, br), 2938 (s, br), 1607 (s), 1457 (s), 1433 (s), 1095 (m), 1030 (m), 910 (m), 855 (m), 814 (m), 727 (m). ESI-MS(positive) in MeOH: m/z 806.35 [Sm(acda)<sub>3</sub>(phen)H]<sup>+</sup> (22%). UV-vis [in *N*,*N*-dimethylformamide,  $\lambda_{max}$ , nm ( $\varepsilon$  / M<sup>-1</sup> cm<sup>-1</sup>)] 389 (33227), 333 (16471).

**[Tb(acda)<sub>3</sub>(phen)]**. Anal. Calcd for  $C_{30}H_{32}N_5TbS_6$ : C, 44.23 ; H, 3.93 ; N, 8.60. Found: C, 44.75; H, 3.88; N, 8.63. IR data (KBr pellet, cm<sup>-1</sup>): 3347 (m, br), 2944 (s, br), 1608 (s), 1500 (s), 1455 (s), 1418 (s), 1267 (m), 1219 (m), 1145 (m), 1102 (m), 1034 (m), 935(m, br), 913 (m), 843 (m), 804 (m), 724 (m). ESI-MS(positive) in MeOH: *m/z* 814.94 [Tb(acda)<sub>3</sub>(phen)H]<sup>+</sup> (18%). UV-vis [in *N*,*N*-dimethylformamide,  $\lambda_{max}$ , nm ( $\varepsilon / M^{-1} cm^{-1}$ )] 387 (33641), 335 (14789).

[**Yb(acda)<sub>3</sub>(phen)**]. Anal. Calcd for C<sub>30</sub>H<sub>32</sub>N<sub>5</sub>YbS<sub>6</sub>: C, 43.48 ; H, 3.86 ; N, 8.45. Found: C, 44.37 ; H, 3.73; N, 8.56. IR data (KBr pellet, cm<sup>-1</sup>): 3351 (m, br), 2944 (s, br), 1612 (s), 1461 (s), 1425 (s), 1216 (m), 1105 (m), 1027 (m), 982 (m), 847 (m), 813 (m), 728 (m). ESI-MS(positive) in MeOH: m/z 829.04 [Yb(acda)<sub>3</sub>(phen)H]<sup>+</sup> (26%). UV-vis [in *N*,*N*-dimethylformamide,  $\lambda_{max}$ , nm ( $\varepsilon$  / M<sup>-1</sup> cm<sup>-1</sup>)] 389 (28567), 330 (11237).



Fig. S1. FTIR spectra of single source precursor complex [Eu(acda)<sub>3</sub>(phen)].



Fig. S2. UV-vis absorption spectra of precursor complex [Eu(acda)<sub>3</sub>(phen)].



Fig. S3. Mass spectrum of precursor complex [Eu(acda)<sub>3</sub>(phen)].



Fig. S4. Powder X-ray diffraction pattern of EuS nanofiber (2c)



Fig. S5. XRD pattern of  $Ln_2S_3$  synthesised via solid state thermolysis [Ln = Nd, Sm, Tb, Yb]



Fig. S6. TEM images and corresponding SAED pattern of (A) and (C)  $Nd_2S_3$ ; (B) and (D)  $Sm_2S_3$  synthesized by solid state thermolysis.



Fig. S7. Typical EDX pattern of EuS (2a) synthesized solvothermally in presence of OAm.



**Fig. S8.** TEM images EuS (A) (2d), (B) (2e) and (C) (2g). (D) HRTEM images of EuS (2e). (E) SAED pattern of EuS (2e).



Fig. S9. Typical TEM image of  $Tb_2S_3$  nanofiber synthesized solvothermally in presence of OAm and DDT.



Fig. S10. Formation and colour change of the precursor solution with temperature during the synthesis of EuS (2a).



**Fig. S11.** FESEM images of (A) EuS (**2a**), (B) EuS (**2b**) (C) Yb<sub>2</sub>S<sub>3</sub> synthesized by solid state thermolysis. (A) Inset : magnified view of cube-like orientation.



**Fig. S12.** Uv-vis spectra and corresponding band gap energy calculation for (A) EuS (**2f**), (B) EuS (**2b**).



Fig. S13. Uv-vis spectra and corresponding band gap energy calculation for  $Nd_2S_3$  (left panel),  $Sm_2S_3$  (right panel) synthesized by solid state thermolysis.Band gap of  $Nd_2S_3$  and  $Sm_2S_3$  are 2.12 eVand 2.67 eV respectively.



**Fig. S14.** Uv-vis spectra and corresponding band gap energy calculation for  $Tb_2S_3$  (left panel),  $Yb_2S_3$  (right panel) synthesized by solid state thermolysis. Band gap of  $Tb_2S_3$  and  $Yb_2S_3$  are 1.91 eVand 2.45 eV respectively.



Fig. S15. Colour of the well dispersed solution of  $Ln_2S_3$  (Ln = Nd, Sm, Tb and Yb) in toluene

| Table S1. Comparison of morphological features of EuS and corresponding photocatalytic rate |
|---------------------------------------------------------------------------------------------|
| constants and half-life values.                                                             |

| Photocatalyst | Morphology  | Surface<br>area<br>(m²/g) | Rate<br>constant<br>(RhB)<br>min <sup>-1</sup> | Half life<br>RhB<br>(τ <sub>1</sub> ) | Rate<br>constant<br>(CR)<br>min <sup>-1</sup> | Half life<br>CR<br>(T <sub>2</sub> ) | Rate<br>constant<br>(MB)<br>min <sup>-1</sup> | Half life<br>MB<br>(τ <sub>3</sub> ) |
|---------------|-------------|---------------------------|------------------------------------------------|---------------------------------------|-----------------------------------------------|--------------------------------------|-----------------------------------------------|--------------------------------------|
| EuS (1)       | Sphere-like | 124.42                    | 3.37×10 <sup>-2</sup>                          | 20.56                                 | 2.11×10 <sup>-1</sup>                         | 3.28                                 | 3.65×10 <sup>-2</sup>                         | 18.99                                |
| EuS (2a)      | Cube-like   | 51.14                     | 2.11×10 <sup>-2</sup>                          | 32.84                                 | 1.22×10 <sup>-1</sup>                         | 5.68                                 | 2.47×10 <sup>-2</sup>                         | 28.05                                |
| EuS (2c)      | Nano-fiber  | 36.17                     | 1.73×10 <sup>-2</sup>                          | 40.05                                 | 1.03×10 <sup>-1</sup>                         | 6.72                                 | 1.58×10-2                                     | 43.86                                |

| Photocatalyst    | Synthetic<br>Method        | Rate<br>constant<br>(RhB)<br>min <sup>-1</sup> | Half life<br>RhB<br>(τ <sub>1</sub> ) | Rate<br>constant<br>(CR)<br>min <sup>-1</sup> | Half life<br>CR<br>(T <sub>2</sub> ) | Rate<br>constant<br>(MB)<br>min <sup>-1</sup> | Half life<br>MB<br>(τ <sub>3</sub> ) |
|------------------|----------------------------|------------------------------------------------|---------------------------------------|-----------------------------------------------|--------------------------------------|-----------------------------------------------|--------------------------------------|
| EuS (1)          | Solid-state<br>thermolysis | 3.37×10-2                                      | 20.56                                 | 2.11×10 <sup>-1</sup>                         | 3.28                                 | 3.65×10-2                                     | 18.99                                |
| $Nd_2S_3$        | Solid-state thermolysis    | 0.26×10 <sup>-2</sup>                          | 266.54                                | 0.14×10 <sup>-1</sup>                         | 49.50                                | 0.34×10 <sup>-2</sup>                         | 203.82                               |
| $Sm_2S_3$        | Solid-state<br>thermolysis | 0.08×10 <sup>-2</sup>                          | 866.25                                | 0.17×10 <sup>-1</sup>                         | 40.76                                | 0.14×10 <sup>-2</sup>                         | 495.00                               |
| $Tb_2S_3$        | Solid-state thermolysis    | 0.11×10 <sup>-2</sup>                          | 630.00                                | 0.19×10 <sup>-1</sup>                         | 36.47                                | 0.30×10 <sup>-2</sup>                         | 231.00                               |
| $Yb_2S_3$        | Solid-state thermolysis    | 0.06×10-2                                      | 1066.15                               | 0.10×10 <sup>-1</sup>                         | 67.94                                | 0.13×10-2                                     | 533.07                               |
| TiO <sub>2</sub> | Commercially available     | 0.33×10 <sup>-2</sup>                          | 211.28                                | 0.23×10 <sup>-1</sup>                         | 30.13                                | 0.57×10 <sup>-2</sup>                         | 122.44                               |

**Table S2.** Comparison of photocatalytic rate constants and half-life values between EuS (1) and other lanthanide analogues.



**Fig. S16.** Time profiles of photocatalytic degradation of RhB with different active species scavengers. (BQ: benzoquinone, AO: ammonium oxalate, TBA: *tert*-butylalcohol)