Supplementary Material (ESI) for XXX This journal is (c) The Royal Society of Chemistry 2015

Electronic Supplementary Information

Nitrogen and sulfur codoped graphene quantum dots as a new fluorescent probe for Au³⁺ ion in aqueous media

Tingting Yang, Fei Cai, Xiaodan Zhang, Yuming Huang*

Quantum yield (QY) measurement

The QY of the N,S-GQDs was determined by using quinine sulfate as the standard sample and was calculated according to the following equation:

$$Q = Q_r \times \frac{I}{I_r} \times \frac{A_r}{A} \times \frac{n^2}{n_r^2}$$
(1)

where Q is the quantum yield, I is the measured integrated emission intensity, n is the refractive index of the solvent (1.33 for water), and A is the optical density. The subscript "r" refers to the reference standard with known QY. The QY of the as-synthesized N,S-GQDs is shown in Table S1.

Sample	Integrated emission	Abs at 360 nm	Refractive index	Quantum Yield
*	·			
	intensity (I)	wavelength (A)	of solvent (<i>n</i>)	(%)
	5 ()	0 ()		()
Ouinine sulfate	3200	0.045	1 33	57.7
2		0.0.0	1.00	0,
N S-GODs	1086	0.025	1 33	35.4
11,5-0005	1000	0.025	1.55	55.1
COD	110	0.025	1.22	2.6
GQDs	110	0.035	1.33	2.6

Table S1. QY of the as-synthesized N,S-GQDs

Supplementary Material (ESI) for XXX This journal is (c) The Royal Society of Chemistry 2015

Figure S1. (A) TEM image of the N,S-GQDs; (B) TEM image of the N,S-GQDs after reaction with Au³⁺; (C) The size distribution histogram of the N,S-GQDs (D) The size distribution histogram of the N,S-GQDs after reaction with Au³⁺.

Figure S2. Raman spectra of the N,S-GQDs.

Figure S3. FT-IR spectra of the GQDs and N,S-GQDs.

Supplementary Material (ESI) for XXX This journal is (c) The Royal Society of Chemistry 2015

Figure S4. High resolution S2p, C1s and O1s XPS spectra for the N,S-GQDs.

Figure S5. (A) The fluorescence emission spectra of the N,S-GQDs by hydrothermal reaction of different cysteine amount (0, 0.1, 0.15, 0.2, 0.3 g) while kept the amount of CA unchanged (2.0 g in the present work) at 200 °C for 8 h. (B) The fluorescence emission spectra of the N,S-GQDs by hydrothermal reaction of 0.2 g cysteine and 2.0 g CA at 200 °C for different reaction time (4 h, 6 h, 8 h, 10 h, 12 h, respectively).

Figure S6. Variation of the fluorescence response of the N,S-GQDs suspension with time at room temperature.

Figure S7. Photostability of 60 mg L^{-1} N,S-GQDs. Irradiation source: 150 W Xe lamp.

Figure S8. Effect of NaCl concentration on the fluorescence response of 60 mg L⁻¹ N,S-GQDs. Error bars represent one standard deviation for three measurements.

Figure S9. Absorption of 150 mg L^{-1} N,S-GQDs after reaction with 50 μ M Au³⁺. Insets: The

photograph of the N,S-GQDs after reaction with Au³⁺.

Figure S10. Effect of reaction temperature on the reaction time between 60 mg L⁻¹ N,S-GQDs and 50 μ M Au³⁺ (black line) and corresponding fluorescence intensity ratio (F_0 -F)/ F_0 of the resulting solution (red line).

Supplementary Material (ESI) for XXX This journal is (c) The Royal Society of Chemistry 2015

Figure S11. Effect of N,S-GQDs concentration on the fluorescence intensity in the absence and presence of 50 μ M Au³⁺. Error bars represent one standard deviation for three measurements.

Figure S12. FL responses of 60 mg/L N,S-GQDs at 425 nm in the absence (green line) and presence (black square) of 50 μ M Au³⁺ ions at different pH values. Relative FL intensities [($F_0 - F$)/ F_0] of solutions of 60 mg L⁻¹ N,S-GQDs at 425 nm in the presence of 50 μ M Au³⁺ ions at different pH values (black line).

Figure S13. (A) Relative FL intensities $[(F_0 - F)/F_0]$ of the N,S-GQDs at 425 nm upon addition of various anions and H₂O₂ (100, 500 or 1000 μ M); (B) Fluorescence responses of the N,S-GQDs to Au³⁺ in the absence and presence of 2 mM oxalic acid (OA), citric acid (CA) and ascorbic acid (AA). The error bars represent one standard deviation for three measurements.