Supporting information

Waterborne Biodegradable Polyurethane 3-Dimentional Porous Scaffold For Rat Cerebral Tissue Regeneration

Yan-Chao Wang^{a,1}, Fang Fang^{a,1,*}Ying-Ke Wu^b, Xiao-Lin Ai^a, Ting Lan^c, Rui-Chao Liang^a, Yu Zhang^d, Narasimha Murthy Trishul ^a, Min He^a, Chao You^a, Chuan Yu ^e and Hong Tan^{b,*}

a Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu,610041, Sichuan, People's Republic of China.

b College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, People's Republic of China.

c Department of Pathology, West China Hospital, Sichuan University, Chengdu,610041, Sichuan, People's Republic of China.

d Department of Neurosurgery, Affiliated Hospital/Clinical Medical College of Chengdu University, Chengdu,610081, Sichuan, People's Republic of China.

e State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China

This work was financially supported by the projects of National Natural Science Foundation of China (contract/grant number: 81100925, 81472361, 51273124, 51273126) and the National Science Fund for Distinguished Young Scholars of China (contract/grant number: 51425305)

¹ First Author: Fang Fang contributed equally to this work with Yan-Chao Wang,

and is the co-first author for this paper.

*Corresponding authors: Fang Fang and Hong Tan.

Tel.: +86-28-85460961; fax: +86-28-85405402.

E-mail addresses: <u>merrisn@hotmail.com</u> and <u>wyc89890707@icloud.com</u> (F. Fang); <u>hongtan@scu.edu.cn</u> (H. Tan).

Synthetic method of Waterborne Biodegradable Polyurethane 3-Dimentional porous scaffold

Firstly, L-lysine diisocyanate(LDI) and 1‰ of organic bismuth was added in to the stirred poly ethylene glycol (PEG, molecular weight 1450) and poly εcaprolactone (PCL, molecular weight 2000) at 80 °C under a dry nitrogen atmosphere. The 1, 3-propanediol (PDO) was added to melting reaction mixture for 2h at 65°C as a chain extender. Secondly the prepolymer was mixed with L-lysine solution to emulsify, meanwhile, adjusting the PH of system to 8.0 by using dilute sodium hydroxide solution for 3h. Then emulsion was dropped into a 48wells plate the diameter of each well is about 1.0 cm to form the scaffold with thickness around 3.0mm. The 48wells plate with emulsion were kept in refrigerator at 4°C for 4h, then it transferred to -25°C for 24h as pre-freezing before freeze-drying. The prefrozen emulsion in 48wells plate was lyophilized in a freeze-dryer (Boyikang, Beijing) for 24h to dry sample completely (Fig1)¹. To synthesis WBPU 17 and WBPU25 we changed mole content of PEG in soft segment as 17% and 25%.

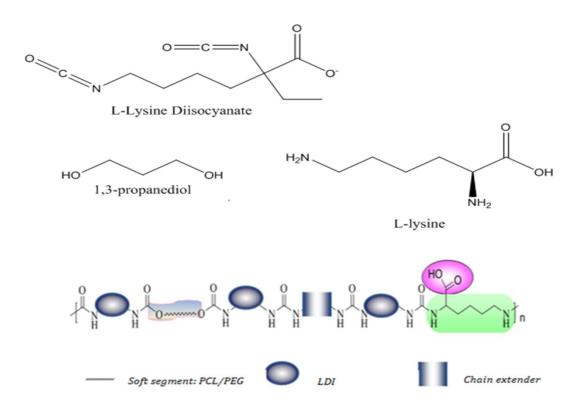


Fig S1: Schematic diagram of Waterborne Biodegradable Polyurethane (WBPU) 3-Dimentional porous scaffold

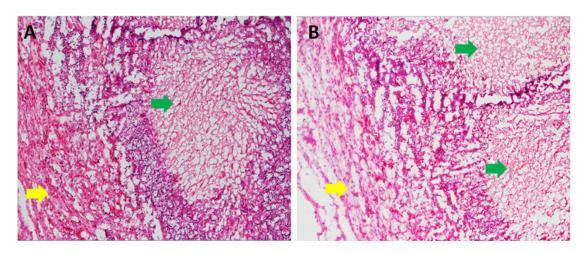


Fig S2: HE stain of WBPU25 treated rat's brain tissue at magnification of 100X (A) and 200 X (B) shows the infiltration of cells into the WBPU25 (Yellow arrow) and scaffold (Green arrow) at eight weeks postoperative *in vivo*.

Reference:

1. X. Jiang, F. Yu, Z. Wang, J. Li, H. Tan, M. Ding and Q. Fu, *Journal of Biomaterials Science, Polymer Edition*, 2010, **21**, 1637-1652.