Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2015

Supplementary materials to:

C-8 Mannich base derivatives of baicalein display improved glucuronidation stability: exploring the mechanism by experimentation and theoretical calculations

Guiyuan He^{a,b}, Shixuan Zhang^c, Liang Xu^d, Yangliu Xia^{a,b}, Ping Wang^a, Shiyang Li^a, Liangliang

Zhu^a, Hongxi Xu^e, Guangbo Ge^{*a,c} Ling Yang^{*a}

^aLaboratory of Pharmaceutical Resource Discovery, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian,

China.

E-mail: geguangbo@dicp.ac.cn; yling@dicp.ac.cn

Tel: 0086-8437-9317 Fax: 0086-41184676961

^bUniversity of Chinese Academy of Sciences, Beijing 100049, China.

^cState Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116012, China.

^dCollege of Chemistry, Dalian University of Technology, Dalian, 116024, China

^eShanghai University of Traditional Chinese Medicines, Shanghai, 201203, China.

The materials include the following:

Contents	Index	Page
Methods	M1-3	2
UFLC spectra of BA glucuronidation in HLM and HIM	Fig. S1	2
Mass spectra for baicalein, BA-a, BA-j and their corresponding mono-	Fig. S2	3
glucuronide		
Proton and carbon NMR chemical shift assignments for BA-a and its 6-O-	Table S1	4
glucuronide		
Proton and carbon NMR chemical shift assignments for BA-j and its 6-O-	Table S2	4
glucuronide		
The molecular structures of BA-a 6-O-glucuronide and BA-j 6-O-glucuronide	Fig. S 3	5
The HMBC correlation of BA-a 6-O-glucuronide and BA-j 6-O-glucuronide	Fig. S 4	5
¹ H NMR spectra for BA-a	Fig. S 5	6
¹³ C NMR spectra for BA-a	Fig. S 6	6
¹ H NMR spectra for BA-a 6-O-glucuronide	Fig. S 7	7
¹³ C NMR spectra for BA-a 6-O-glucuronide	Fig. S 8	7
HMBC spectrum of BA-a 6-O-glucuronide	Fig. S 9	8
HSQC spectrum of BA-a 6-O-glucuronide	Fig. S 10	8
¹ H NMR spectra for BA-j	Fig. S 11	9
¹³ C NMR spectra for BA-j	Fig. S 12	9
¹ H NMR spectra for BA-j 6-O-glucuronide	Fig. S 13	10
¹³ C NMR spectra for BA-j 6-O-glucuronide	Fig. S 14	10
HMBC spectrum of BA-j 6-O-glucuronide	Fig. S 15	11
HSQC spectrum of BA-j 6-O-glucuronide	Fig. S 16	11

Methods:

1. UFLC analysis of BA and its glucuronides.

BA glucuronidation samples were analyzed by a UFLC spectrometry system (Shimadzu, Kyoto, Japan), equipped with two LC-20AD pumps, a DGU-20A3 vacuum degasser, a SIL-20ACHT autosampler, a CTO-20AC column oven, an SPD-M 20A DAD, a CBM-20A communications bus module, a mass detector (2010EV) with an ESI interface, and a computer equipped with UFLC-MS solution software (version 3.41; Shimadzu). A Shim-pack VP-ODS (150.0 × 2.0 mm; 3 μ m; Shimadzu) analytical column with an ODS guard column (5×2.0 mm i.d, 2.2 μ m; Shimadzu) was used to separate these flavonoids and their glucuronides. The column temperature was kept at 40°C. The mobile phase was acetonitrile (A) and water containing 0.2% formic acid (B) at a flow rate of 0.4 ml/min. For BA analysis, the following gradient was used: 0 to 10 min, 90% B to 55% B, 10 to 13 min, 5% B, 13 to 17min balance to 90% B.

2. Identification of baicalein, BA-a, BA-j and their mono-glucuronide by mass spectrometry

Mass detection was performed on a Shimadzu LCMS-2010EV instrument with an ESI interface in negative ion mode from m/z100 to 800. The detector voltage was set at -1.55 kV for negative ion detection. The curved desolvation line temperature and the block heater temperature were both set at 250°C, whereas the curved desolvation line voltage was set at 40 V. Other MS detection conditions were as follows: interface voltage, 4.5 kV and +4.0 kV for positive and negative ion detection, respectively; nebulizing gas (N₂) flow, 1.5 l/min; and drying gas (N₂) pressure, 0.06 MPa. Data processing was performed using the LC-MS solution software (version 3.41; Shimadzu).

3. Characterization of the major metabolite of BA-a and the metabolite of BA-j

The metabolites were dissolved in DMSO- d_6 (Euriso-Top, Saint-Aubin, France) for NMR analysis. The structures of the metabolites were determined by NMR spectra including ¹H NMR, ¹³C NMR, heteronuclear singular quantum correlation (HSQC) and heteronuclear multiple bond correlation (HMBC). All experiments were performed on a Bruker 500 MHz NMR Spectrometer. Chemical shifts were reported in parts per million (ppm, δ scale) and referenced to tetramethylsilane at 0 ppm for ¹H NMR (500 MHz) and ¹³C NMR (125 MHz).

Fig. S1 Baicalein 10uM was incubated in HLM and HIM contained UDPGA co-factor for 10min. Both 7-O-glucuronide and 6-O-glucuronide can be detected in baicalein HLM and HIM incubation.

Fig. S2: Mass spectroscopy detection for baicalein, BA-a, BA-j and their corresponding monoglucuronides. Under the negative ion mode, (a): BA-a displayed a molecular ion [M-1] at m/z326.2; (b)the mono-glucuronide of BA-a displayed a molecular ion [M-1] at m/z502.2 ;(c): BA-j displayed a molecular ion [M-1]at m/z382.1; (d) the mono-glucuronide of BA-j displayed a molecular ion[M-1] at m/z558.3; (e)baicalein displayed a molecular ion [M-1] at m/z269; and (f) the mono-glucuronide of baicalein displayed a molecular ion [M-1] at m/z445

	BA-a 6-O-G		BA-a		
Position	¹³ C (ppm)	¹ H (ppm)	¹³ C (ppm)	¹ H (ppm)	
		(J in Hz)		(J in Hz)	
2	160.79		160.87		
3	104.43	6.80 (1H, s)	104.43	6.81 (1H, s)	
4	180.35		180.71		
5	153.18		149.21		
6	131.33		131.38		
7	169.34		161.82		
8	96.89		101.05		
9	152.51		143.78		
10	98.84		96.66		
11	52.07	4.32 (2H, s)	53.09	4.21 (1H, s)	
12	42.12	2.77 (3H, s)	42.7	2.61 (3H, s)	
13	42.12	2.77 (3H, s)	42.7	2.61 (3H, s)	
1'	131.21		131.29		
2'	126.10	8.07-8.08(2H, d, J=6.35)	126.00	8.04-8.06 (2H, m)	
3'	129.02	7.56-7.58 (3H, m)	129.04	7.57-7.58 (3H, m)	
4'	129.39	7.56-7.58 (3H, m)	129.91	7.57-7.58 (3H, m)	
5'	129.02	7.56-7.58 (3H, m)	129.04	7.57-7.59 (3H, m)	
6'	126.10	8.07-8.08 (2H, d, J=6.35)	126.00	8.04-8.06 (2H, m)	
G1	106.64	4.52-4.53 (1H, d, J=7.50)			
G2	73.21	3.27 (1H, t, J=8.05)			
G3	73.85	3.19 (1H, t, J=8.75)			
G4	71.82	3.41(1H, t, J=8.70)			
G5	76.35	3.57-3.59 (1H, d, J=10.55)			
COOH	171.00	13.07 (1H, s)			

S-table 2	Proton and	carbon NMR	chemical shift	assignments	for BA-	i and its 6-0-	glucuronide
J table 2.	1 I Otori anu		chemical sinn	Lassignments		j anu its 0 0	giucuioniuc

		BA-j 6-O-G	BA-j		
Position	¹³ C	¹ H (ppm)	¹³ C (ppm)	¹ H (ppm)	
	(ppm)	(J in Hz)		(J in Hz)	
2	161.07		163.23		
3	104.48	6.83 (1H, s)	104.05	7.09 (1H,s)	
4	180.53		182.22		
5	152.29		148.3		
6	131.20		128.81		
7	168.01		153.59		
8	96.84		95.97		
9	153.00		149.26		
10	99.42		104.92		
11	50.71	4.32 (2H,t, J=14.50,13.75)	59.39	4.50-4.52 (2H,d, J=10.0)	
12	31.05	1.63-1.86 (2H, brs)	31.3	1.85-1.93 (2H, brs)	
13	39.50	2.73-3.05(2H, m)	50.75	3.17-3.19 (2H, brs)	
14	48.57	3.27 (1H, t, J=8.3,7.8)	63.64	3.88 (1H, brs)	
15	39.50	2.73-3.05 (2H, m)	48.58	3.44-3.46 (2H brs)	
16	31.05	1.63-1.86 (2H, brs)	29.36	1.57-1.59 (2H, brs)	
1'	130.77		130.81		
2'	126.11	8.07 (2H, m)	126.68	8.07-8.17 (2H, m)	
3'	129.04	7.57 (2H, m)	129.25	7.60-7.64 (3H, m)	
4'	131.39	7.60 (1H, m)	132.08	7.60-7.64 (3H, m)	
5'	129.04	7.57 (2H, m)	129.25	7.60-7.64 (3H, m)	
6'	126.11	8.07 (2H, m)	126.68	8.07-8.17 (2H, m)	
G1	106.23	4.56(1H, d, J=7.55)			
G2	73.19	3.33 (1H, m)			
G3	76.24	3.20 (1H, m)			
G4	71.31	3.40 (1H, m)			
G5	76.11	3.58 (1H, m)			
COOH	170.00				

Fig. S3 Molecular structures of BA-a 6-O-glucuronide and BA-j 6-O-glucuronide.

Note: A connectivity between G1-CH (4.52-4.53 ppm) and C-6 (131.33 ppm) in HMBC spectra of BA-a metabolite was detected which could assigned the metabolite as 6-O-glucuronide of BA-a. In addition, the chemical shifts of C-6 (131.33 ppm) and C-1' (131.21 ppm) of BA-a metabolite were almost overlapped. The correlation spot (6.8, 131.21 ppm) should be the connectivity between 3-CH and C-1'. Connectivity between 11-CH₂ (4.32 ppm) and C-12, 13 (42.12 ppm); 11-CH₂ (4.32 ppm) and C-10 (98.84 ppm) were detected which confirmed that the dimethylamino-methyl substituent were at C-8 position. In BA-j-G HMBC spectra, connectivity between G1-CH (4.56 ppm) and C-6 (131.20 ppm) was found, therefore the glucuronide of BA-j in HLM was identified as 6-O-glucuronide as well. The correlation between11-CH₂ (4.32 ppm) and C-7 (168.01 ppm), C-9 (153 ppm) could all be detected, which strongly indicated the 4-hydroxypiperidin-1-yl)-methyl substituent was at C-8 position of BA-j metabolite.

Fig. S5 ¹H NMR spectrumfor BA-a

Fig. S7 ¹H NMR spectrum for BA-a 6-O-glucuronide

Fig. S8¹³C NMR spectrum for BA-a 6-O-glucuronide

Fig. S9 HMBC spectrum of BA-a 6-O-glucuronide

Fig. S10 HSQC spectrum of BA-a 6-O-glucuronide

Fig. S13 ¹H NMR spectrum of BA-j 6-O-glucuronide

Fig. S14 ¹³C NMR spectrum of BA-j 6-O-glucuronide.

Fig. S15 HMQC spectrum of BA-j 6-O-glucuronide

Fig. S16 HSBC spectrum of BA-j 6-O-glucuronide