Iodine(III)-Mediated Construction of Dibenzoxazepinone Skeleton from 2(Aryloxy)benzamides through Oxidative C-N Formation

Xuliang Guo, ${ }^{\dagger}$ Daisy Zhang-Negrerie, ${ }^{\dagger}$ and Yunfei Du*, ${ }^{\dagger, \dagger} \ddagger$
${ }^{\dagger}$ Tianjin Key Laboratory for Modern Drug Delivery \& High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China.
${ }^{\star}$ Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
duyunfeier@tju.edu.cn

Supporting Information

Page
I. General Information S1
II. Preparation and Characterization Data of Amides 1 S1-S9
III. Preparation of $\mathbf{2 a - m}$ and $\mathbf{2 q}$ S10
IV. Preparation of $\mathbf{2 a - m}, \mathbf{2 q}$ and Characterization Data of Compounds $\mathbf{2}$ S10-
S17
V. References S17-
S18
VI. ${ }^{1} \mathrm{H}-\mathrm{NMR},{ }^{13} \mathrm{C}$-NMR and ${ }^{19} \mathrm{~F}$-NMR Spectra S19-S89

I. General Information

All reactions were carried out at room temperature under air unless otherwise noted. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on 600 MHz or 400 MHz spectrometer at 25 ${ }^{\circ} \mathrm{C}$. Chemical shifts values are given in ppm and referred as the internal standard to TMS: 0.00 ppm . The peak patterns are indicated as follows: s , singlet; d , doublet; t , triplet; q, quartet; qui, quintet; m, multiplet and dd, doublet of doublets, brs, broad singlet. The coupling constants J, are reported in Hertz (Hz). High resolution mass spectrometry (HRMS) was obtained on a Q-TOF micro spectroMeter. Melting points were determined with a MicroMelting point apparatus without corrections. Organic solutions were concentrated by rotary evaporation below $40{ }^{\circ} \mathrm{C}$ in vacuum. TLC plates were visualized by exposure to ultraviolet light.

Reagents and solvents were purchased as reagent grade and were used without further purification. All reactions were performed in standard glassware, heated at 70 ${ }^{\circ} \mathrm{C}$ for 3 h before use. Flash column chromatography was performed over silica gel 200-300 m and the eluent was a mixture of ethyl acetate (EA) and petroleum ether (PE).

II. Procedures for the Synthesis of Amides $1 .{ }^{1-3}$

1. General Procedure for the Synthesis of Acids 3a-p and 3r.

To a mixture of substituted 2-bromobenzoic ester (10 mmol) and substitutedphenol $(12 \mathrm{mmol})$ in toluene $(20 \mathrm{~mL})$ was added $\mathrm{Cs}_{2} \mathrm{CO}_{3}(3.78 \mathrm{~g}, 15 \mathrm{mmol})$ and $\mathrm{CuI}(1.90 \mathrm{~g}$ 10 mmol) and the flask was purged with N_{2}. After stirring for 5 minutes at room temperature, the mixture was stirred at $125{ }^{\circ} \mathrm{C}$ for 15 hours. After the completion of the reaction (monitored by TLC), the reaction mixture was cooled down to room temperature, filtered over celite, washed with ethyl acetate, and evaporated. To the crude material was added $\mathrm{MeOH}(40 \mathrm{~mL}), \mathrm{KOH}(2.8 \mathrm{~g})$ and the mixture was stirred for 3 hours at $45{ }^{\circ} \mathrm{C}$. After completion of the hydrolysis, aq. HCl solution (3 M, 45
mL) was used to adjust pH to $3-4$. Then extracted with ethyl acetate $(3 \times 100 \mathrm{~mL})$. The combined organic layers were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. The crude product can be used for the next step without any purification.

2. Procedure for the Synthesis of Acid 3q.

2-Bromobenzoic acid ($2.0 \mathrm{~g}, 10 \mathrm{mmol}$), 4-nitrophenol ($1.4 \mathrm{~g}, 10 \mathrm{mmol}$), N methylmorpholine ($1.7 \mathrm{~mL}, 15 \mathrm{mmol}$) and $\mathrm{Cu}(\mathrm{I})$ oxide $(0.72 \mathrm{~g}, 5 \mathrm{mmol})$ were heated to reflux in dioxane (30 mL) under nitrogen for 16 h . The resulting reaction mixture was allowed to cool slowly to room temperature before $\mathrm{HCl}(4 \mathrm{M}, 20 \mathrm{~mL})$ was added. The precipitate was filtrated, washed with water $(10 \mathrm{~mL} \times 2)$, and then concentrated under reduced pressure. ${ }^{4}$

3. General Procedure for Converting Acids 3a-r into Amides 1a-r.

To a solution of the substituted 2-bromobenzoic acid in $\mathrm{DCM}(0.3 \mathrm{M})$ was added a catalytic amount of DMF (2 drops). At ambient temperature, oxalyl chloride (1.2 equiv) was added dropwise over a period of 0.5 h . The resulting solution was kept at room temperature until TLC indicated the total consumption of the acid. Then, the solvent was removed under reduced pressure. The residue was dissolved in dry DCM (5 mL) and slowly added dropwise to a solution of the $\mathrm{NH}_{2} \mathrm{OMe} \cdot \mathrm{HCl}$ (1.2 equiv) and $\mathrm{K}_{2} \mathrm{CO}_{3}$ (3 equiv) in $\mathrm{EA} / \mathrm{H}_{2} \mathrm{O}=2: 1(40 \mathrm{~mL})$. The reaction mixture was maintained at ambient temperature and monitored by TLC. Upon completion, the mixture was
extracted with EA $(3 \times 50 \mathrm{~mL})$ and the combined organic phase was washed with $\mathrm{NH}_{4} \mathrm{Cl}(80 \mathrm{~mL})$ and brine (80 mL). Dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporation of the solvent under reduced pressure and purification of the crude residue by flash column chromatography on silica gel (EA/PE) afforded the desired amides.

N-Methoxy-2-phenoxybenzamide (1a)

Following the general procedure, 1a was obtained as a white solid (1.34 g), yield: 55% (over three steps), mp. $66-68{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 10.10(\mathrm{~s}, 1 \mathrm{H})$, $8.25(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.44-7.40(\mathrm{~m}, 2 \mathrm{H}), 7.40-7.36(\mathrm{~m}, 1 \mathrm{H}), 7.26-7.18(\mathrm{~m}$, $2 \mathrm{H}), 7.10-7.05(\mathrm{~m}, 2 \mathrm{H}), 6.81-6.76(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (150 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 163.6,155.5,154.9,133.2,132.2,130.3,125.2,123.6,121.6,120.1$, 117.6, 64.5; HRMS (ESI) calcd for $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{NNaO}_{3}{ }^{+}\left[\mathrm{M}+\mathrm{Na}^{+}\right]$266.0788, found 266.0790 .

N-Methoxy-5-methyl-2-phenoxybenzamide (1b)

1b
Following the general procedure, 1b was obtained as a light yellow oil (1.16 g), yield: 45% (over three steps). ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 10.08$ (s, 1H), 8.03 (s, $1 \mathrm{H}), 7.39$ (dd, $J=8.3,7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.24-7.15$ (m, 2H), 7.04 (d, $J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.71$ (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}$), 3.83 (s, 3H), $2.36(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 163.7$, $155.5,153.0,133.8,133.6,132.2,130.2,124.8,121.5,119.6,118.2,64.5,20.5 ;$ HRMS (ESI) calcd for $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{NNaO}_{3}{ }^{+}\left[\mathrm{M}+\mathrm{Na}^{+}\right]$280.0944, found 280.0947.

5-Bromo- N-methoxy-2-phenoxybenzamide (1c)

1c
Following the general procedure, $\mathbf{1 c}$ was obtained as light yellow oil $(1.67 \mathrm{~g})$, yield: 52% (over three steps). ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 10.10(\mathrm{~s}, 1 \mathrm{H}), 8.35(\mathrm{~s}, 1 \mathrm{H}), 7.50$ - 7.38 (m, 3H), $7.30-7.25(\mathrm{~m}, 1 \mathrm{H}), 7.07(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.67(\mathrm{~d}, J=8.8 \mathrm{~Hz}$, 1 H), $3.85(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 163.4,154.9,154.3,133.3,132.3$, 124.1, 122.0, 121.6, 117.8, 64.6; HRMS (ESI) calcd for $\mathrm{C}_{14} \mathrm{H}_{12}{ }^{79} \mathrm{BrNNaO}_{3}{ }^{+}[\mathrm{M}+$ Na^{+}343.9893, found 343.9895 .

5-Fluoro- N-methoxy-2-phenoxybenzamide (1d)

1d
Following the general procedure, $\mathbf{1 d}$ was obtained as a light yellow oil (1.17 g), yield: 45% (over three steps). ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 10.11$ (s, 1H), 7.94 (dd, J $=9.0,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.47-7.35(\mathrm{~m}, 2 \mathrm{H}), 7.23(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.09(\mathrm{ddd}, J=9.1$, $7.1,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.06-7.03(\mathrm{~m}, 2 \mathrm{H}), 6.79(\mathrm{dd}, J=9.0,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 162.2$, $158.6\left(\mathrm{~d}, J_{C-F}=243.9 \mathrm{~Hz}\right), 155.3,151.3,130.4$, $125.2,123.5\left(\mathrm{~d}, J_{C-F}=7.4 \mathrm{~Hz}\right), 120.0\left(\mathrm{~d}, J_{C-F}=23.9 \mathrm{~Hz}\right), 119.7\left(\mathrm{~d}, J_{C-F}=7.6 \mathrm{~Hz}\right)$, $119.6,118.3\left(\mathrm{~d}, J_{C-F}=25.4 \mathrm{~Hz}\right), 64.6 ;{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-118.48(\mathrm{~s}, 1 \mathrm{~F})$; HRMS (ESI) calcd for $\mathrm{C}_{14} \mathrm{H}_{12}{ }^{19} \mathrm{FNNaO}_{3}{ }^{+}\left[\mathrm{M}+\mathrm{Na}^{+}\right]$284.0693, found 284.0692.

4-Chloro- N-methoxy-2-phenoxybenzamide (1e)

Following the general procedure, $\mathbf{1 e}$ was obtained as a light yellow oil (1.39 g), yield: 50% (over three steps). ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 10.04(\mathrm{~s}, 1 \mathrm{H}), 8.20(\mathrm{~d}, J$ $=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.30(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.22-7.15(\mathrm{~m}, 1 \mathrm{H})$, 7.10 (d, $J=8.3 \mathrm{~Hz}, 2 \mathrm{H}$), $6.74(\mathrm{~s}, 1 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ
$162.7,156.2,154.1,138.9,133.4,130.4,125.9,123.8,120.4,119.8,117.3,64.6 ;$ HRMS (ESI) calcd for $\mathrm{C}_{14} \mathrm{H}_{12}{ }^{35} \mathrm{ClNNaO}_{3}{ }^{+}\left[\mathrm{M}+\mathrm{Na}^{+}\right] 300.0398$, found 300.0398 .

2-(4-Bromophenoxy)-5-fluoro-N-methoxybenzamide (1f)

Following the general procedure, $1 \mathbf{f}$ was obtained as a white solid (1.64 g), yield: 48% (over three steps), mp. $106-108{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.96(\mathrm{~s}, 1 \mathrm{H})$, 7.91 (d, $J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.52$ (dd, $J=8.1,3.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.17-7.05(\mathrm{~m}, 1 \mathrm{H}), 6.93(\mathrm{~d}, J$ $=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.80(\mathrm{dd}, J=8.9,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (150 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 162.0,158.8\left(\mathrm{~d}, J_{C-F}=244.7 \mathrm{~Hz}\right), 154.6,150.6,133.36,123.9\left(\mathrm{~d}, J_{C-F}=7.1\right.$ $\mathrm{Hz}), 121.1,120.1\left(\mathrm{~d}, J_{C-F}=23.8 \mathrm{~Hz}\right), 119.9\left(\mathrm{~d}, J_{C-F}=7.7 \mathrm{~Hz}\right), 118.4\left(\mathrm{~d}, J_{C-F}=25.2\right.$ Hz), 117.9, 64.6; ${ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-117.46$ (s, 1F); HRMS (ESI) calcd for $\mathrm{C}_{14} \mathrm{H}_{11}{ }^{79} \mathrm{Br}^{19} \mathrm{FNNaO}_{3}{ }^{+}\left[\mathrm{M}+\mathrm{Na}^{+}\right]$361.9799, found 361.9802 .

2-(4-Bromophenoxy)- N -methoxybenzamide (1g)

1 g
Following the general procedure, $\mathbf{1 g}$ was obtained as a beige solid (1.51 g), yield: 47% (over three steps), mp. $88-90^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.96(\mathrm{~s}, 1 \mathrm{H}), 8.23(\mathrm{~d}$, $J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.53(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.46-7.36(\mathrm{~m}, 1 \mathrm{H}), 7.24(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H})$, $6.96(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.79(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (150 MHz , CDCl_{3}) $\delta 163.4,154.9,154.3,133.3,132.3,124.1,122.0,121.6,117.8,64.6$ (one carbon peak was missing due to overlapping); HRMS (ESI) calcd for $\mathrm{C}_{14} \mathrm{H}_{11}{ }^{79} \mathrm{Br}^{19} \mathrm{FNNaO}_{3}{ }^{+}\left[\mathrm{M}+\mathrm{Na}^{+}\right] 361.9799$, found 361.9801.

2-(4-Chlorophenoxy)- N -methoxybenzamide (1h)

1h

Following the general procedure, $\mathbf{1 h}$ was obtained as a white solid (1.33 g), yield: 48% (over three steps), mp. $86-88^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.92(\mathrm{~s}, 1 \mathrm{H})$, $8.22(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.42-7.39(\mathrm{~m}, 1 \mathrm{H}), 7.38-7.35(\mathrm{~m}, 2 \mathrm{H}), 7.25-7.21(\mathrm{~m}$, $1 \mathrm{H}), 7.09-6.92(\mathrm{~m}, 2 \mathrm{H}), 6.79(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (150 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 163.4,154.9,153.80,133.2,132.1,130.2,130.2,124.0,122.2,121.1,117.9$, 64.4; HRMS (ESI) calcd for $\mathrm{C}_{14} \mathrm{H}_{12}{ }^{35} \mathrm{ClNNaO}_{3}{ }^{+}\left[\mathrm{M}+\mathrm{Na}^{+}\right] 300.0398$, found 300.0396

5-Bromo-2-(4-bromophenoxy)- N -methoxybenzamide (1i)

$1 i$
Following the general procedure, $\mathbf{1 i}$ was obtained as a white solid (1.56 g), yield: 39% (over three steps), mp. $77-79{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.05(\mathrm{~d}, J=2.5 \mathrm{~Hz}$, 1H), 7.58 (dd, $J=8.7,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.47$ - 7.38 (m, 2H), 6.87 (d, $J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.84$ $-6.79(\mathrm{~m}, 2 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 162.0,154.1,153.8$, 136.0, 134.9, 133.5, 123.4, 121.7, 119.4, 118.4, 116.9, 64.6; HRMS (ESI) calcd for $\mathrm{C}_{14} \mathrm{H}_{11}{ }^{79} \mathrm{Br}_{2} \mathrm{NNaO}_{3}{ }^{+}\left[\mathrm{M}+\mathrm{Na}^{+}\right] 421.8998$, found 421.9001 .

2-(4-Bromophenoxy)-4-chloro- N-methoxybenzamide (1i)

Following the general procedure, $\mathbf{1} \mathbf{j}$ was obtained as a white solid $(1.28 \mathrm{~g})$, yield: 36% (over three steps), mp. $116-118{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.90(\mathrm{~s}, 1 \mathrm{H}), 8.17$ (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.20(\mathrm{dd}, J=8.5,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.99(\mathrm{~d}, J$ $=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.74(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $162.5,155.6,153.3,139.0,133.6,133.5,124.3,122.1,120.1,118.8,117.4,64.6 ;$ HRMS (ESI) calcd for $\mathrm{C}_{14} \mathrm{H}_{11}{ }^{79} \mathrm{Br}^{35} \mathrm{ClNNaO}_{3}{ }^{+}\left[\mathrm{M}+\mathrm{Na}^{+}\right] 377.9503$, found 377.9504.

2-(4-Bromophenoxy)- N -methoxy-5-methylbenzamide (1k)

1k
Following the general procedure, $\mathbf{1 k}$ was obtained as a tan solid (1.71 g), yield: 51% (over three steps), mp. $62-64{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.91(\mathrm{~s}, 1 \mathrm{H}), 8.01(\mathrm{~s}$, 1H), 7.49 (d, $J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.24-7.16$ (m, 1H), 6.92 (d, $J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.71$ (d, J $=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 163.5,154.9$, 152.4, 134.2, 133.9, 133.1, 132.3, 121.9, 121.0, 118.4, 117.3, 64.5, 20.5; HRMS (ESI) calcd for $\mathrm{C}_{15} \mathrm{H}_{14}{ }^{79} \mathrm{BrNNaO}_{3}{ }^{+}\left[\mathrm{M}+\mathrm{Na}^{+}\right]$358.0049, found 358.0047.

4-Chloro-2-(4-chlorophenoxy)- N -methoxybenzamide (11)

1

Following the general procedure, $\mathbf{1 1}$ was obtained as a white solid (1.25 g), yield: 40% (over three steps), mp. $63-65^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.97(\mathrm{~s}, 1 \mathrm{H}), 8.12(\mathrm{~d}$, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.18(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.05(\mathrm{~d}, J=8.2 \mathrm{~Hz}$, $2 \mathrm{H}), 6.74(\mathrm{~s}, 1 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 162.5,155.7,152.9$, 138.9, 133.3, 131.1, 130.5, 124.2, 121.6, 120.3, 117.5, 64.5; HRMS (ESI) calcd for $\mathrm{C}_{14} \mathrm{H}_{11}{ }^{35} \mathrm{Cl}_{2} \mathrm{NNaO}_{3}{ }^{+}\left[\mathrm{M}+\mathrm{Na}^{+}\right]$334.0008, found 334.0010.

2-(4-Chlorophenoxy)- N -methoxy-5-methylbenzamide (1m)

Following the general procedure, $\mathbf{1 m}$ was obtained as a white solid $(1.49 \mathrm{~g})$, yield: 51%, mp. $62-64{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.99(\mathrm{~s}, 1 \mathrm{H}), 7.98(\mathrm{~s}, 1 \mathrm{H}), 7.41-$ $7.31(\mathrm{~m}, 2 \mathrm{H}), 7.21(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.05-6.91(\mathrm{~m}, 2 \mathrm{H}), 6.71(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H})$, $3.83(\mathrm{~s}, 3 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 163.5,154.3,152.5,134.1$, 133.9, 132.2, 130.1, 129.8, 121.8, 120.7, 118.3, 64.5, 20.5; HRMS (ESI) calcd for $\mathrm{C}_{15} \mathrm{H}_{14}{ }^{35} \mathrm{ClNNaO}_{3}{ }^{+}\left[\mathrm{M}+\mathrm{Na}^{+}\right]$314.0554, found 314.0557.

N-Methoxy-2-(p-tolyloxy)benzamide (1n)

Following the general procedure, $\mathbf{1 n}$ was obtained as a beige solid (1.39 g), yield: 54%, mp. $96-98{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 10.18(\mathrm{~s}, 1 \mathrm{H}), 8.24(\mathrm{~d}, J=7.7 \mathrm{~Hz}$, $1 \mathrm{H}), 7.40-7.32(\mathrm{~m}, 1 \mathrm{H}), 7.21(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.18(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.97(\mathrm{~d}, J$ $=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.76(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (150 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 163.7,156.0,152.5,135.0,133.1,132.2,130.8,123.3,121.2,120.2$, 117.1, 64.5, 20.8; HRMS (ESI) calcd for $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{NNaO}_{3}{ }^{+}\left[\mathrm{M}+\mathrm{Na}^{+}\right]$280.0944, found 280.0943.

2-(2,3-Dimethylphenoxy)- N-methoxybenzamide (10)

Following the general procedure, $\mathbf{1 0}$ was obtained as a brown solid (1.02 g), yield: 37%, mp. $104-106{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 10.32(\mathrm{~s}, 1 \mathrm{H}), 8.27(\mathrm{dd}, J=$ $7.8,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.32$ (ddd, $J=8.4,7.4,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.20-7.06$ (m, 3H), 6.86 (d, $J=$ $7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.56(\mathrm{dd}, J=8.3,0.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 2.12(\mathrm{~s}, 3 \mathrm{H})$. ${ }^{13}{ }^{2}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 163.8,156.2,152.0,139.6,133.2,132.3,129.2,127.4$, 126.9, 122.7, 120.1, 118.9, 115.3, 64.6, 20.1, 12.4; HRMS (ESI) calcd for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{NNaO}_{3}{ }^{+}\left[\mathrm{M}+\mathrm{Na}^{+}\right]$294.1101, found 294.1103.

N-Methoxy-3-phenoxythiophene-2-carboxamide (1p)

Following the general procedure, $\mathbf{1 p}$ was obtained as a light yellow oil (1.27 g), yield: 37%, mp. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.64(\mathrm{~s}, 1 \mathrm{H}), 7.41(\mathrm{t}, J=7.7 \mathrm{~Hz}, 3 \mathrm{H})$, 7.23 (t, $J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.53(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.85(\mathrm{~s}$,
$3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 160.3,155.9,153.5,130.2,130.0,125.3,119.2$, 118.1, 64.9 (one carbon peak was missing due to overlapping); HRMS (ESI) calcd for $\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{NNaO}_{3} \mathrm{~S}^{+}\left[\mathrm{M}+\mathrm{Na}^{+}\right]$272.0352, found 272.0355.

N-Methoxy-2-(4-nitrophenoxy)benzamide (1q)

1q
Following the general procedure, $\mathbf{1 q}$ was obtained as a beige solid (1.12 g), yield: $41 \%, \mathrm{mp} .108-110{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.51$ (s, 1H), 8.27 (d, $J=9.1$ $\mathrm{Hz}, 2 \mathrm{H}), 8.16$ (d, $J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.58-7.46$ (m, 1H), 7.37 (t, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.11$ $(\mathrm{d}, J=9.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.97(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (150 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 163.0,161.3,152.6,143.9,133.5,132.2,126.2,125.9,123.9,120.2,118.3$, 64.6; HRMS (ESI) calcd for $\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{NaO}_{5}{ }^{+}\left[\mathrm{M}+\mathrm{Na}^{+}\right] 311.0638$, found 311.0637.

N-Methoxy-2-(4-methoxyphenoxy)benzamide (1r)

Following the general procedure, $\mathbf{1 r}$ was obtained as a beige solid $(1.47 \mathrm{~g})$, yield: 54%, mp. $88-90{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 10.24(\mathrm{~s}, 1 \mathrm{H}), 8.24(\mathrm{~s}, 1 \mathrm{H}), 7.35$ (dd, $J=3.0,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.23-7.10(\mathrm{~m}, 1 \mathrm{H}), 7.03(\mathrm{dd}, J=8.7,4.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.98-$ $6.90(\mathrm{~m}, 2 \mathrm{H}), 6.76-6.66(\mathrm{~m}, 1 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (150 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 163.7,157.1,156.6,147.8,133.1,132.2,123.0,121.7,120.7,116.4,115.3$, 64.6, 55.7; HRMS (ESI) calcd for $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{NNaO}_{4}{ }^{+}\left[\mathrm{M}+\mathrm{Na}^{+}\right]$296.0893, found 296.0896.

III. General Procedure for the Synthesis of 2a-m and 2q.

To a stirred solution of $\mathbf{1}(0.5 \mathrm{mmol})$ in TFE $(10 \mathrm{~mL})$ was added PIDA (1.2 mmol) slowly at room temperature. The resulting mixture was kept at the same temperature until the TLC indicated that the total consumption of $\mathbf{1}$. The reaction was quenched by sat. $\mathrm{NaHCO}_{3}(25 \mathrm{~mL})$ and extracted with ethyl acetate $(3 \times 20 \mathrm{~mL})$. The combined organic layer was washed with brine and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and then evaporated under reduced pressure. The residue was purified by flash column chromatography on silica gel to afford the desired product 2.

IV. Procedures for the synthesis of 2n-p and 2r

To a stirred solution of $\mathbf{1}(0.5 \mathrm{mmol})$ in TFE $(10 \mathrm{~mL})$ was added $\mathrm{PhIO}(2.2 \mathrm{mmol})$ slowly at rt . The resulting mixture was heat at reflux for 15 hours. The reaction was quenched by sat. $\mathrm{NaHCO}_{3}(25 \mathrm{~mL})$ and extracted with ethyl acetate $(3 \times 20 \mathrm{~mL})$. The combined organic layer was washed with brine and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$

10-Methoxydibenzo[b,f][1,4]oxazepin-11(10H)-one (2a)

Following the general procedure, 2a was obtained as a light yellow oil (108 mg), yield: 89%. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.89(\mathrm{dd}, J=7.8,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{dd}, J$ $=8.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{td}, J=8.0,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.20-7.17(\mathrm{~m}, 1 \mathrm{H}), 7.16(\mathrm{dd}, J=$ $8.2,2.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.14-7.13(\mathrm{~m}, 1 \mathrm{H}), 7.10(\mathrm{td}, J=7.7,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 162.6,159.8,151.4,134.2,132.7,132.2,127.0,126.0$, 125.4, 124.5, 121.2, 120.5, 120.4, 62.7; HRMS (ESI) calcd for $\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{NNaO}_{3}{ }^{+}[\mathrm{M}+$ Na^{+}264.0631, found 264.0633.

10-Methoxy-2-methyldibenzo $[b, f][1,4]$ oxazepin- $11(10 H)$-one (2b)

Following the general procedure, $\mathbf{2 b}$ was obtained as a light yellow oil (120 mg), yield: $93 \%{ }^{1}{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.75(\mathrm{~s}, 1 \mathrm{H}), 7.52(\mathrm{dd}, J=8.0,1.2 \mathrm{~Hz}$, $1 \mathrm{H}), 7.27(\mathrm{~s}, 1 \mathrm{H}), 7.26-7.24(\mathrm{~m}, 1 \mathrm{H}), 7.22(\mathrm{td}, J=7.8,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.17(\mathrm{dd}, J=$ 7.7, 1.3 Hz, 1H), $7.10(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.92(\mathrm{~s}, 3 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (150 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 162.8,157.748,151.7,135.2,134.8,132.7,132.1,127.0,125.9$, 124.0, 121.1, 120.6, 120.1, 62.6, 20.6; HRMS (ESI) calcd for $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{NNaO}_{3}{ }^{+}[\mathrm{M}+$ Na^{+}278.0788, found 278.0786.

2-Bromo-10-methoxydibenzo[b,f][1,4]oxazepin-11(10H)-one (2c)

2c

Following the general procedure, 2c was obtained as a light yellow oil (152 mg), yield: 95%. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.08(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{dd}, J=8.6$, $2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.54$ (d, $J=8.2 \mathrm{~Hz}, 1 \mathrm{H}$), $7.27-7.24$ (m, 2H), 7.21 (dd, $J=10.9,4.3 \mathrm{~Hz}$, $1 \mathrm{H}), 7.11(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.92(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 161.3$, $158.8,151.2,136.9,134.7,132.3,127.3,126.3,126.2,122.3,121.1,120.7,118.3$, 62.8; HRMS (ESI) calcd for $\mathrm{C}_{14} \mathrm{H}_{10}{ }^{79} \mathrm{BrNNaO}_{3}{ }^{+}\left[\mathrm{M}+\mathrm{Na}^{+}\right]$341.9736, found 341.9739 .

2-Fluoro-10-methoxydibenzo[b,f][1,4]oxazepin-11(10H)-one (2d)

2d
Following the general procedure, $\mathbf{2 d}$ was obtained as a white solid (117 mg), yield: 89%, mp. $127-129^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.65(\mathrm{dd}, J=8.5,2.3 \mathrm{~Hz}, 1 \mathrm{H}$), $7.54(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.28-7.24(\mathrm{~m}, 2 \mathrm{H}), 7.19$ (ddd, $J=6.2,4.2,3.7 \mathrm{~Hz}, 3 \mathrm{H})$, $3.93(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 161.5,159.5\left(\mathrm{~d}, J_{C-F}=245.0 \mathrm{~Hz}\right), 155.7$ $\left(\mathrm{d}, J_{C-F}=2.6 \mathrm{~Hz}\right), 151.5,132.4,127.3,126.2,126.0\left(\mathrm{~d}, J_{C-F}=7.9 \mathrm{~Hz}\right), 122.0\left(\mathrm{~d}, J_{C-}\right.$ $\left.{ }_{F}=8.1 \mathrm{~Hz}\right), 121.1,120.9\left(\mathrm{~d}, J_{C-F}=23.7 \mathrm{~Hz}\right), 120.7,118.2\left(\mathrm{~d}, J_{C-F}=25.5 \mathrm{~Hz}\right), 62.7$; ${ }^{19} \mathrm{~F}$ NMR (376 MHz, CDCl_{3}) $\delta-116.54$ ($\mathrm{s}, 1 \mathrm{~F}$); HRMS (ESI) calcd for $\mathrm{C}_{14} \mathrm{H}_{10}{ }^{19} \mathrm{FNNaO}_{3}{ }^{+}\left[\mathrm{M}+\mathrm{Na}^{+}\right]$282.0537, found 282.0540.

3-Chloro-10-methoxydibenzo $[b, f][1,4]$ oxazepin- $11(10 H)$-one (2e)

Following the general procedure, $\mathbf{2 e}$ was obtained as a beige solid (133 mg), yield: 96%, mp. $107-109{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.93(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.54$ (dd, $J=8.4,1.5 \mathrm{~Hz}, 1 \mathrm{H}$), 7.27 (ddd, $J=8.3,3.6,1.7 \mathrm{~Hz}, 3 \mathrm{H}), 7.22$ (ddd, $J=9.2,8.0$, $2.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.92(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 161.8,159.9,150.9,139.7$, 133.2, 132.5, 127.2, 126.4, 125.9, 123.0, 121.2, 120.9, 120.6, 62.7; HRMS (ESI) calcd for $\mathrm{C}_{14} \mathrm{H}_{10}{ }^{35} \mathrm{ClNNaO}_{3}{ }^{+}\left[\mathrm{M}+\mathrm{Na}^{+}\right]$298.0241, found 298.0243.

8-Bromo-2-fluoro-10-methoxydibenzo[b,f][1,4]oxazepin-11(10H)-one (2f)

Following the general procedure, $\mathbf{2 f}$ was obtained as a colorless oil (135 mg), yield: $80 \%{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.71-7.58(\mathrm{~m}, 2 \mathrm{H}), 7.30(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H})$, $7.20(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.14(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.95(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (150 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 161.3,159.6\left(\mathrm{~d}, J_{C-F}=245.6 \mathrm{~Hz}\right), 155.3\left(\mathrm{~d}, J_{C-F}=2.4 \mathrm{~Hz}\right), 150.1,133.8$, $130.0,125.5\left(\mathrm{~d}, J_{C-F}=7.9 \mathrm{~Hz}\right), 123.4,122.6,122.0\left(\mathrm{~d}, J_{C-F}=8.1 \mathrm{~Hz}\right), 121.3\left(\mathrm{~d}, J_{C-F}\right.$ $=23.7 \mathrm{~Hz}), 118.9,118.3\left(\mathrm{~d}, J_{C-F}=25.5 \mathrm{~Hz}\right), 63.1 ;{ }^{19} \mathrm{~F}$ NMR $\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-$ 115.94 (s, 1F); HRMS (ESI) calcd for $\mathrm{C}_{14} \mathrm{H}_{9}{ }^{79} \mathrm{Br}^{19} \mathrm{FNNaO}_{3}{ }^{+}\left[\mathrm{M}+\mathrm{Na}^{+}\right]$359.9642, found 359.9645 .

8-Bromo-10-methoxydibenzo $[b, f][1,4]$ oxazepin- $11(10 H)$-one (2 g)

Following the general procedure, $\mathbf{2 g}$ was obtained as a light yellow solid (146 mg), yield: 91%, mp. $66-68{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.98(\mathrm{dd}, J=7.8,1.6 \mathrm{~Hz}$, $1 \mathrm{H}), 7.68(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.59-7.46(\mathrm{~m}, 1 \mathrm{H}), 7.31-7.26(\mathrm{~m}, 2 \mathrm{H}), 7.21(\mathrm{~d}, J=$ $8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.15(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.95(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $162.4,159.3,150.2,134.5,134.2,132.3,129.7,125.7,124.1,123.3,122.7,120.3$, 118.7, 63.1; HRMS (ESI) calcd for $\mathrm{C}_{14} \mathrm{H}_{10}{ }^{79} \mathrm{BrNNaO}_{3}{ }^{+}\left[\mathrm{M}+\mathrm{Na}^{+}\right]$341.9736, found 341.9734.

8-Chloro-10-methoxydibenzo[b,f][1,4]oxazepin-11(10H)-one (2h)

Following the general procedure, $\mathbf{2 h}$ was obtained as a reddish-brown oil (126 mg), yield: 91%. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.00(\mathrm{dd}, J=7.8,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.54(\mathrm{t}, J=$
$2.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.52$ (dd, $J=7.7,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.29$ (dd, $J=5.6,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.25-7.19$ $(\mathrm{m}, 2 \mathrm{H}), 7.15(\mathrm{dd}, J=8.6,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.97(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $162.4,159.4,149.6,134.4,133.9,132.3,131.4,126.7,125.6,124.1,122.3,120.3$, 120.3, 63.0; HRMS (ESI) calcd for $\mathrm{C}_{14} \mathrm{H}_{10}{ }^{35} \mathrm{ClNNaO}_{3}{ }^{+}\left[\mathrm{M}+\mathrm{Na}^{+}\right]$298.0241, found 298.0238.

2,8-Dibromo-10-methoxydibenzo $[b, f][1,4]$ oxazepin-11(10H)-one (2i)

Following the general procedure, $\mathbf{2 i}$ was obtained as a beige solid (147 mg), yield: 74%. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.08(\mathrm{~s}, 1 \mathrm{H}), 7.68(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.60(\mathrm{dd}, J$ $=8.6,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.31(\mathrm{dd}, J=8.6,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.11(\mathrm{dd}, J=8.5,8.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.94$ (s, 3H). ${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 161.1,158.3,149.9,137.2,134.8,133.8$, $130.0,125.8,123.4,122.6,122.2,119.1,118.6,63.1$; HRMS (ESI) calcd for $\mathrm{C}_{14} \mathrm{H}_{9}{ }^{79} \mathrm{Br}_{2} \mathrm{NNaO}_{3}{ }^{+}\left[\mathrm{M}+\mathrm{Na}^{+}\right] 419.8841$, found 419.8844 .

8-Bromo-3-chloro-10-methoxydibenzo[b,f][1,4]oxazepin-11(10H)-one (2i)

Following the general procedure, $\mathbf{2} \mathbf{j}$ was obtained as a white solid (133 mg), yield: 75%, mp. $121-123{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.98-7.88(\mathrm{~m}, 1 \mathrm{H}), 7.73-$ $7.64(\mathrm{~m}, 1 \mathrm{H}), 7.34-7.28(\mathrm{~m}, 1 \mathrm{H}), 7.26-7.21(\mathrm{~m}, 2 \mathrm{H}), 7.13(\mathrm{dd}, J=8.6,1.4 \mathrm{~Hz}, 1 \mathrm{H})$, $3.94(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 161.6,159.5,149.6,140.1,134.0,133.3$, 129.9, 126.1, 123.3, 122.6, 122.6, 120.9, 119.1, 63.1; HRMS (ESI) calcd for $\mathrm{C}_{14} \mathrm{H}_{9}{ }^{79} \mathrm{Br}^{35} \mathrm{ClNNaO}_{3}{ }^{+}\left[\mathrm{M}+\mathrm{Na}^{+}\right]$375.9347, found 375.9349.

8-Bromo-10-methoxy-2-methyldibenzo $[b, f][1,4]$ oxazepin-11(10H)-one (2k)

Following the general procedure, $\mathbf{2 k}$ was obtained as a tan solid (159 mg), yield: 95%, mp. $119-121^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.75(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.66(\mathrm{~d}, J$ $=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.28(\mathrm{td}, J=8.7,2.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.11(\mathrm{dd}, J=8.4,8.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.94(\mathrm{~s}$, 3 H), $2.34(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 162.6,157.3,150.4,135.5,135.1$, 134.2, 132.2, 129.7, 123.5, 123.3, 122.6, 120.1, 118.6, 63.0, 20.6; HRMS (ESI) calcd for $\mathrm{C}_{16} \mathrm{H}_{14}{ }^{79} \mathrm{BrNNaO}_{2}{ }^{+}\left[\mathrm{M}+\mathrm{Na}^{+}\right] 354.0100$, found 354.0101.

3,8-Dichloro-10-methoxydibenzo $[b, f][1,4]$ oxazepin-11(10H)-one (21)

21
Following the general procedure, $2 \mathbf{l}$ was obtained as a white solid (112 mg), yield: 72%, mp. $132-134{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.93(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.53$ (s, 1H), $7.27-7.23(\mathrm{~m}, 2 \mathrm{H}), 7.19(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.15(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.94$ (s, $3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 161.6,159.5,149.0,140.0,133.7,133.3,131.8$, 126.9, 126.1, 122.6, 122.3, 120.8, 120.4, 63.1; HRMS (ESI) calcd for $\mathrm{C}_{14} \mathrm{H}_{9}{ }^{35} \mathrm{Cl}_{2} \mathrm{NNaO}_{3}{ }^{+}\left[\mathrm{M}+\mathrm{Na}^{+}\right]$331.9852, found 331.9850 .

8-Chloro-10-methoxy-2-methyldibenzo[b,fl[1,4]oxazepin-11(10H)-one (2m)

Following the general procedure, $\mathbf{2 m}$ was obtained as a tan solid (124 mg), yield: 85%, mp. $117-119{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.76(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.52(\mathrm{~d}, J$ $=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.29(\mathrm{dd}, J=8.2,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.13(\mathrm{dd}, J=$ 8.6, 2.4 Hz, 1H), $7.09(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.94(\mathrm{~s}, 3 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (150 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 162.6,157.4,149.9,135.5,135.1,134.0,132.2,131.2,126.7,123.5$, 122.2, 120.4, 120.1, 63.0, 20.6; HRMS (ESI) calcd for $\mathrm{C}_{15} \mathrm{H}_{12}{ }^{35} \mathrm{ClNNaO}_{3}{ }^{+}\left[\mathrm{M}+\mathrm{Na}^{+}\right]$ 312.0398 , found 312.0401 .

10-Methoxy-8-methyldibenzo[b,fl[1,4]oxazepin-11(10H)-one (2n)

Following the general procedure, $\mathbf{2 n}$ was obtained as a light yellow oil (76 mg), yield: $59 \%{ }^{1}{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.96(\mathrm{dd}, J=7.8,1.6 \mathrm{~Hz}, 1 \mathrm{H}$), $7.48(\mathrm{ddd}, J=9.2$, $7.8,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.33$ (d, $J=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.22$ (ddd, $J=8.0,7.5,3.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.14$ (d, $J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.98(\mathrm{dd}, J=8.2,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.93(\mathrm{~s}, 3 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 162.7,159.9,149.4,136.0,134.1,132.1,127.6,125.3,124.6$, 120.8, 120.3, 62.7, 21.0 (two carbon peak was missing due to overlapping); HRMS (ESI) calcd for $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{NNaO}_{3}{ }^{+}\left[\mathrm{M}+\mathrm{Na}^{+}\right]$278.0788, found 278.0791.

10-Methoxy-6,7-dimethyldibenzo[b,fl] 1,4$]$ oxazepin-11(10H)-one (20)

Following the general procedure, $\mathbf{2 0}$ was obtained as a white solid (59 mg), yield: 43%, mp. $117-119^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.98(\mathrm{dd}, J=7.8,1.6 \mathrm{~Hz}, 1 \mathrm{H})$, 7.48 (td, $J=8.2,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.31-7.18(\mathrm{~m}, 3 \mathrm{H}), 7.01(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.90(\mathrm{~s}$, $3 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}), 2.27(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 162.6,159.8,149.9$, $136.2,133.8,132.2,130.4,129.1,126.6,125.3,125.1,120.6,117.5,62.8,19.8,12.6$; HRMS (ESI) calcd for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{NNaO}_{3}{ }^{+}\left[\mathrm{M}+\mathrm{Na}^{+}\right]$292.0944, found 292.0941.

9-Methoxybenzo[b]thieno[2,3-fl] 1,4]oxazepin- $10(9 H)$-one (2 p)

2p
Following the general procedure, $\mathbf{2 p}$ was obtained as a tan solid (41 mg), yield: 33%, mp. $123-125{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.58(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.51(\mathrm{~d}, J$ $=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.32-7.22(\mathrm{~m}, 1 \mathrm{H}), 7.18(\mathrm{~d}, J=3.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.85(\mathrm{~d}, J=5.3 \mathrm{~Hz}, 1 \mathrm{H})$, $3.89(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.9,150.1,133.2,132.3,126.9,126.2$,
121.1, $120.8,120.3,118.8,62.9$ (one carbon peak was missing due to overlapping); HRMS (ESI) calcd for $\mathrm{C}_{12} \mathrm{H}_{9} \mathrm{NNaO}_{3} \mathrm{~S}^{+}\left[\mathrm{M}+\mathrm{Na}^{+}\right]$270.0195, found 270.0197.

N-Methoxy-2-(4-nitrophenoxy)- N-(2,2,2-trifluoroethoxy)benzamide (2q)

2q
Following the general procedure, $\mathbf{2 q}$ was obtained as a colorless oil (110 mg), yield: $57 \%{ }^{1}{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.22(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.20(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H})$, $7.58(\mathrm{~m}, 2 \mathrm{H}), 7.35(\mathrm{td}, J=7.6,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.11(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.03-6.98(\mathrm{~m}$, $2 \mathrm{H}), 4.30$ ($\mathrm{q}, ~ J=8.4 \mathrm{~Hz}, 2 \mathrm{H}$), 3.77 ($\mathrm{s}, 3 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.8$, $161.7,151.1,142.1,132.1,128.9,125.7,125.0,124.4,121.7(\mathrm{q}, J=272.6 \mathrm{~Hz})$ $120.4,116.2,69.3\left(\mathrm{q}, ~ J=34.8 \mathrm{~Hz}\right.$), 60.2; HRMS (ESI) calcd for $\mathrm{C}_{16} \mathrm{H}_{13}{ }^{19} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{NaO}_{6}{ }^{+}$ $\left[\mathrm{M}+\mathrm{Na}^{+}\right] 409.0618$, found 409.0621.

3-Methylspiro[benzo[e][1,3]oxazine-2,1'-cyclohexa[2,5]diene]-4,4'(3H)-dione (2r)

2r
Following the general procedure, $\mathbf{2 r}$ was obtained as a yellow solid (85 mg), yield: $66 \%, \mathrm{mp} .103-105{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.01(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.53$ $(\mathrm{t}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.19(\mathrm{t}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.01(\mathrm{~d}, J=9.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.97(\mathrm{~d}, J=7.8$ $\mathrm{Hz}, 1 \mathrm{H}), 6.39(\mathrm{~d}, J=9.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 183.9$, 162.6, 154.0, 140.2, 135.6, 131.7, 128.2, 123.4, 117.1, 116.3, 86.9, 65.5; HRMS (ESI) calcd for $\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{NNaO}_{4}{ }^{+}\left[\mathrm{M}+\mathrm{Na}^{+}\right] 280.0580$, found 280.0577.

V. References:

1. (a) T. Akbarzadeh, S. A. Tabatabai, M. J. Khoshnoud, B. Shafaghic and A. Shafieea, Bioorg. Med. Chem., 2003, 11, 769. (b) M. J. Assarzadeh, A. Almasirad, A. Shafiee, M. N. Koopaei and M. Abdollahi, Med. Chem. Res., 2014, 23, 948.
2. (a) R. Giri, J. R. Goodell, C. Xing, A. Benoit, H. Kaur, H. Hiasa and D. M. Ferguson, Bioorg. Med. Chem., 2010, 18, 1456. (b) R. Arundhathi, D. Damodara, A.
P. R. Likhar, M. L. Kantam, P. Saravanan, T. Magdaleno and S. H. Kwonc, $A d v$. Synth. Catal., 2011, 353, 1591.
3. Anderson, M. O.; Jamie, M.; John, S.; and Guy, R. K. Synlett 2004, 13, 2391.
4. D. K. Chalmers, G. H. Scholz, D. J. Topliss, E. Kolliniatis, S. L. A. Munro, D. J. Craik, M. N. Iskander and J. R. Stockigt, J. Med. Chem., 1993, 36, 1272.

1 g

Abstract

 人 N~Nion $\stackrel{\infty}{\infty}$

| 170 | 160 | 150 | 140 | 130 | 120 | 110 | 100 | 90 | ${ }_{\mathrm{f} 1(\mathrm{ppm})}^{80}$ | 70 | 60 | 50 | 40 | 30 | 20 | 10 | 0 |
| :--- |

I
N
N

1n

(

$\begin{array}{ll}\text { BNE } \\ \text { Now } \\ \text { No } \\ \text { Nin } & \text { N } \\ \text { N }\end{array}$

\bar{g}
$\stackrel{\rightharpoonup}{\sigma}$
$\stackrel{\sim}{n}$
1

 ¢

	$\begin{aligned} & \infty \\ & \stackrel{\circ}{8} \\ & \stackrel{8}{\circ} \\ & \hline \end{aligned}$
N-¢	

170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-10

NNNNNNNNNN

NNNNNNNNNNNNNNNON
NNNNNNNNNNNNNNNON

(录

