Supporting Information

## Facile synthesis of Cu<sub>2</sub>O microstructures and their morphology

## dependent electrochemical supercapacitor properties

Rudra Kumar, Prabhakar Rai,\* Ashutosh Sharma\*

Department of Chemical Engineering, Indian Institute of Technology Kanpur,

Kanpur 208016, India

\*Corresponding authors; Email: prkrai@iitk.ac.in, ashutos@iitk.ac.in

## Calculation of the Specific Capacitance;

(a) By using galvanostatic charge discharge method

 $C = (I \times \Delta t) / (m \times \Delta v) = (1 \times 10-3 \times 264) / (1 \times 10-3 \times 0.4) = 660 \text{ F/g}$ 

(b) By cyclic voltammetry

 $Cm = (1/m \times R \times \Delta V) \times \int I(v) dV = (1/1 \times 10-3 \times 2 \times 10-3 \times 0.7) \times 0.000903 = 645 \text{ F/g}$ 

Figure S1 EDS spectra of the  $Cu_2O$  (a) microcubes and (b) microspheres.



Figure S2 Nitrogen adsorption and desorption isotherms and corresponding pore size distribution curves (insets) of  $Cu_2O$  (a) microcubes and (b) microspheres.



Figure S3 Specific capacitance of Cu<sub>2</sub>O microcubes and microspheres at different scan rate.







**Figure S5** (a) CV curve at different electrolyte concentration at 50 mV/s scan rate, (b) cycling stability up to 500 cycle at 50 mV/s scan rate in 6M KOH, (c) Charge-discharge behaviour at different electrolyte concentration at 1A/g current density and (d) specific capacitance at different KOH concentration at 1A/g current density for Cu<sub>2</sub>O microcubes.



Figure S6 Coulombic efficiency of Cu<sub>2</sub>O microcubes.



Figure S7 Nyquist plots of Cu<sub>2</sub>O microcubes and microspheres.



Figure S8 I-V curve measurement of Cu<sub>2</sub>O microcubes and microspheres.



 Table 1 Comparison of supercapacitor properties of Cu<sub>2</sub>O microcubes with similar system

 reported in literature.

| S.<br>N. | Materials                                                                                            | Synthesis<br>route                                                   | Specific<br>Capacitance (F/g)                                                                   | Capacitance<br>Retention                                                   | Refe<br>renc |
|----------|------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|--------------|
| - 10     |                                                                                                      |                                                                      |                                                                                                 |                                                                            | e            |
| 1.       | RGO–Cu <sub>2</sub> O–TiO <sub>2</sub><br>ternary<br>Nanocomposite,                                  | Hydrothermal                                                         | 80 F/g@ 0.2 A/g<br>in 6 M KOH<br>electrolyte, 41.4<br>F/g 32.7 F/g                              | increases from 80<br>to 91.5 F/g<br>after 1000 cycles                      | 1            |
| 2.       | RGO/Cu <sub>2</sub> O<br>composite films<br>on Cu foil                                               | Hydrothermal                                                         | 98.5 F/g @1 A/g                                                                                 | 50% after 1000<br>cycles                                                   | 2            |
| 3        | Cu@Cu <sub>2</sub> O/graphe<br>ne<br>nanocomposites                                                  | Solvothermal                                                         | 100.9 F/g at 0.1<br>A/g, 33.4 F/g                                                               | Capacitance<br>increases from<br>100 F/g to 257<br>F/g after 1000<br>cycle | 3            |
| 4        | Cu <sub>2</sub> O/RGO/Ni(O<br>H) <sub>2</sub> Nanocomposit<br>e                                      | Hydrothermal                                                         | 923.1 F/g @7.0<br>A/g                                                                           | 92.4% retention<br>even after 4,000<br>cycles                              | 4            |
| 5        | Cu <sub>2</sub> O@Reduced<br>graphene oxide<br>composite                                             | Hydrothermal                                                         | 31.0, 26.0, and 24.0<br>F/g @ 100, 200,<br>and<br>400 mA/g                                      | 100 % retention<br>even after 5,000<br>cycles                              | 5            |
| 6        | Three-<br>dimensionally<br>ordered<br>macroporous<br>Cu <sub>2</sub> O/Ni inverse<br>opal electrodes | Electrodepositi<br>on and<br>Template<br>method<br>combined          | 502 F/g for 3DOM<br>Cu <sub>2</sub> O/Ni and 191<br>F/g Cu <sub>2</sub> O/ flat Ni<br>electrode | 85% capacitance<br>retention after<br>500 cycle at 10<br>mV/s              | 6            |
| 7        | Cu <sub>2</sub> O/CuO/RGO<br>nanocomposite                                                           | Hydrothermal                                                         | 173.4 F/g @ 1 A/g<br>to 136.3 F/g @ 10<br>A/g                                                   | 98.2% retention<br>after 100,000<br>cycles at 10 A/g                       | 7            |
| 8        | 3D binder-free<br>Cu <sub>2</sub> O@Cu<br>nanoneedle arrays                                          | Anodization of<br>Cu foam and<br>subsequent<br>electro-<br>oxidation | 862.4 F/g @ 1 A/g                                                                               | 92% after<br>retention after 10<br>000 cycles                              | 8            |

| 9  | mesoporous<br>carbon electrodes<br>with copper oxide<br>nanoparticles | Silica template<br>based       | 380F/g@1mA/cm2with20wt%copperloading                     | 96% retention<br>after 5000 cycles<br>@ 3mA/cm <sup>2</sup> | 9                |
|----|-----------------------------------------------------------------------|--------------------------------|----------------------------------------------------------|-------------------------------------------------------------|------------------|
| 10 | CuO nanowires                                                         | Electrospinnin<br>g            | 620 F/g @ 2<br>A/g,710 F/g @<br>2mV/s                    | 100 % retention<br>after 2000 cycles                        | 10               |
| 11 | CuO nanosheet<br>arrays grown on<br>nickel foam                       | Template-free<br>growth method | 569 F/g @ a<br>current density of<br>5mA/cm <sup>2</sup> | 82.5% retention<br>after 500 cycles                         | 11               |
| 12 | Graphene-Like<br>Copper Oxide<br>Nanofilms                            | Anodisation<br>process         | 919 F/g @ 1 A/g<br>and 748 F/g @ 30<br>A/g               | 93% retention<br>after 5000 cycles                          | 12               |
| 13 | CuO nanosheet<br>clusters                                             | Hydrothermal                   | 535 F/g @5 mV/s                                          | 90% retention<br>after 1000 cycles                          | 13               |
| 14 | Cu <sub>2</sub> O Microcubes                                          | Hydrothermal                   | 660 F/g @ 1 A/g                                          | 80% retention<br>after 1000 cycle<br>@ 5 A/g                | This<br>wor<br>k |

## **References;**

 D. Luo, Y. Li, J. Liu, H. Feng, D. Qian, S. Peng, J. Jiang and Y. Liu, *J. Alloys Comp.*, 2013, 581, 303–307.

2. X. Dong, K. Wang, C. Zhao, X. Qian, S. Chen, Z. Li, H. Liu and S. Dou, *J. Alloys Comp.*, 2014, **586**, 745–753.

Y. Li, Q. Wang, P. Liu, X. Yang, G. Dun and Y. Liu, *Ceramics International*, 2015,
 41, 4248–4253.

4. K. Wang, C. Zhao, S. Min and X. Qian, *Electrochimica Acta*, 2015, 165, 314–322.

5. B. Li, H. Cao, G. Yin, Y. Lu and J. Yin, J. Mater. Chem., 2011, 21, 10645–10648.

 M.-J. Deng, C.-Z. Song, P.-J. Ho, C.-C. Wang, J.-M. Chen and K.-T. Lu, *Phys. Chem. Chem. Phys.*, 2013, **15**, 7479—7483.

K. Wang, X. Dong, C. Zhao, X. Qian and Y. Xu, *Electrochimica Acta*, 2015, 152, 433–442.

C. Dong, Y. Wang, J. Xu, G. Cheng, W. Yang, T. Kou, Z. Zhang and Y. Ding, J. Mater. Chem. A, 2014, 2, 18229–18235.

9. K. P. S. Prasad, D. S. Dhawale, S. Joseph, C. Anand, M. A. Wahab, A. Mano, C.I. Sathish, V. V. Balasubramanian, T. Sivakumar and A. Vinu, *Microporous Mesoporous Materials*, 2013, **172**, 77–86.

B. Vidyadharan, I. I. Misnon, J. Ismail, M. M. Yusoff and R. Jose, J. Alloys Comp.,
 2015, 633, 22–30.

 G. Wang, J. Huang, S. Chen, Y. Gao and D. Cao, *J. Power Sources*, 2011, **196**, 5756– 5760.

12. Y. Lu, X. Liu, K. Qiu, J. Cheng, W. Wang, H. Yan, C. Tang, J.-K. Kim and Y. Luo, *ACS Appl. Mater. Interfaces*, 2015, 7, 9682–9690.

13. G. S. Gund, D. P. Dubal, D. S. Dhawale, S. S. Shindea and C. D. Lokhande, *RSC Adv.*, 2013, **3**, 24099–24107.