Supplementary Information

Synthesis of colloidal MnO_2 with sheet-like structure by one-pot plasma discharge in permanganate aqueous solution

Hyemin Kim ^a, Anyarat Watthanaphanit ^{a,b}, and Nagahiro Saito ^{a,b,c,*}
^a Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
^b Social Innovation Design Center, Institute of Innovation for Future Society, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
^c Green Mobility Collaborative Research Center, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan

*Corresponding author should be addressed to E-mail: hiro@rd.numse.nagoya-u.ac.jp

Fig. S1 Raman spectrum of the MnO_2 powder separated from the colloidal MnO_2 by centrifugation.

Fig. S2 (a) UV-vis absorption spectra of the SPP treated KMnO₄ aqueous solutions (pH = 2) with discharge times of 0–14 min, along with (b) photograph of the obtained solutions as a function of discharge time.

Fig. S3 (a) UV-vis absorption spectra of the SPP treated KMnO₄ aqueous solutions (pH = 12) with discharge times of 0–14 min, along with (b) photograph of the obtained solutions as a function of discharge time.

Fig. S4 UV-vis spectra and photographs of the untreated $KMnO_4$ aqueous solutions of (a) pH = 2, and (b) pH = 12, immediately after sample preparation (0 min) and after the solutions were left for 1 day.

Fig. S5 TEM images of the colloidal MnO₂ synthesized at different pH conditions: (a) 2, (b) 7 and (c) 12, at low and high magnifications.

Fig. S6 (a) Zeta potential (after 24 hours) and (b) photographs (after 3 months) of the colloidal MnO₂ synthesized at different pH conditions: 2, 7 and 12.