An electrochemical facile fabrication of platinum nanoparticles decorated reduced graphene oxide; Application for enhanced electrochemical sensing of H_2O_2

Selvakumar Palanisamy, ^a Hsin Fang Lee, ^a Shen-Ming Chen ^{a*} and Balamurugan Thirumalraj ^a

^aDepartment of Chemical Engineering and Biotechnology, National Taipei University of

Technology, No.1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan (ROC).

*Corresponding author. Fax: +886 2270 25238; Tel: +886 2270 17147, E-mail: smchen78@ms15.hinet.net (S.M. Chen)

Supporting information

Fig. S1 Raman spectra of GO and RGO-PtNPs composite.

Fig. S2 A) CV response of bare (a), RGO (b), PtNPs (c), GO-PtNPs (d) and RGO-PtNPs (e) modified electrodes in 1 mM H_2O_2 containing N_2 saturated PBS at a scan rate of 50 mV s⁻¹.

Fig. S3 Amperometric i–t response obtained at RGO-PtNPs composite modified RDE for the successive addition of 1 μ M H₂O₂ (a), and 500 μ M addition of dopamine (b), ascorbic acid (c) and uric acid (d) solutions into constantly stirred N₂-saturated PBS. Applied potential = 0.1 V.

Fig. S4 The storage stability of the fabricated RGO-PtNPs composite modified electrode on the response to the detection of 1 mM H_2O_2 at different periods of time.