RSC Advances Supplementary Information

2

4

Sinter-resistant gold nanoparticles encapsulated by zeolite

nano-shell for oxidation of cyclohexane

6ShilpiSaxena^{a#}, RupeshSingh^{a#}, Raj Ganesh S Pala^a, Sri Sivakumar^{a,b*}

^aDepartment of Chemical Engineering, Indian Institute of Technology Kanpur, UP-208016, 8India

^bMaterial Science Programme, DST Unit of Soft Nanofabrication, Centre for Environmental 10Science & Engineering, Indian Institute of Technology Kanpur, Kanpur-208016 (UP), India.

[#]Both the authors contributed equally

12* Corresponding Author,

Email: srisiva@iitk.ac.in

16		
18		
20		
22		
24		
26		

4	6)

Figure S2. a) Scanning electron micrograph of silica-coated gold nanoparticles
b) Transmission electron micrograph of silica-coated gold nanoparticles

	0		0 1
58			
60			
62			
64			
66			
68			

70	<i>Figure S4.</i> Transmission electron micrograph of Au@MCM-22
72	
74	
76	
78	

Figure S5. Scanning electron micrograph of gold supported on the surface of ZSM-5

96	Figure S6.(a) Scanning electron micrograph of bare ZSM-5 (b) Scanning electron
	micrograph of bare MCM 22

Figure S7.(a) Transmission electron micrograph of bare ZSM-5 (b) Scanning electron
micrograph of bare MCM 22

Figure S9. UV-vis spectra for Au@MCM-22

Figure S10. Scanning electron micrograph of calcined sample of gold supported on the

surface of ZSM-5 at 500°C

136	
138	
140	

Figure S11. Scanning electron micrograph gold nanoparticles calcined at 500°C

Figure S12. a. Selected area electron diffraction (SAED) analysis for Au@MCM-22

Figure S12. b. Selected area electron diffraction (SAED) analysis for bare MCM-22

The indexing of the freshly prepared samples was carried out and the corresponding 166diffraction planes are mentioned in Figure S12, which confirms the zeolites shell as MCM-22 and ZSM-5 of prepared samples Au@MCM-22 and Au@ZSM-5. Figure S12 (a) corresponds 168to the SAED pattern of Au@MCM-22 which was reported in the previously submitted manuscript. Figure S12 (a) shows the gold diffraction pattern [JCPDS 04-0784] from (111), 170(220) and (422) planes. The diffraction from (310) plane corresponds to MCM-22 [JCPDS 04-0784]. Figure S12(b) corresponds to SAED patterning for bare MCM-22 zeolite which 172 gives the diffraction from (102) and (310) planes. Figure S12(c) corresponds to the diffraction from bare ZSM-5, which shows the diffraction pattern from (312), (501) and (552) 174 planes.

Figure S13.a. NH₃ TPD profiles for MCM-22 catalyst

Figure S13.b. NH₃ TPD profiles for ZSM-5 catalyst

Figure S14. XRD analysis of Com-ZSM-5 and Conv-MCM-22

Figure S16.Conversion of cyclohexane and selectivity for products for different catalyst.
 Amount of gold in case of control experiment was higher (1000 times) than in case of Au@ZMS-5 and Au@MCM-22.

Figure S17. N₂ adsorption-desorption isotherms of (a) ZSM-5, (b) Au@ZSM-5,
 (c) MCM-22, and (d) Au@MCM-22

Sample	S _{BET}	V _{micro}	V _{meso} ^a	V _{total}
	(m ² /g)	(cm^{3}/g)	(cm ³ /g)	(cm^3/g)
ZSM-5	421	0.19	0.46	0.65
MCM-22	398	0.18	0.35	0.53
Au@ZSM-5	409	0.18	0.42	0.60
Au@MCM-22	392	0.17	0.34	0.51

270 Table S1: Textural Property of prepared zeolite samples

 ${}^{a}V_{meso} = V_{total} - V_{micro}$

Table S2: Elemental compositions determined by X-ray fluorescence (XRF)

Sample	Si%	Al%	Na%	0%	Au%
Au@MCM-22	30.98	6.08	6.03	56.9	0.01
Au@ZSM-5	54.34	8.79	8.5	28.36	0.01
MCM-22	32.03	6.83	6.29	54.85	-
ZSM-5	56.07	6.52	6.13	31.28	-

Table S3:	Turn over	number ^a	and Tur	n over	frequen	icyb
-----------	-----------	---------------------	---------	--------	---------	------

Sample	TON ^a	TOF ^b (h ⁻¹)
Au@MCM-22	1788	596
Bare MCM-22	1492	497
Au@ZSM-5	1528	509
Bare ZSM-5	1485	495
Conv-MCM-22	720	240
Com-ZSM-5	409	136