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S-1: TEM Images of (a) ZCF1, (b) ZCF2, (c) ZNC and their respective FFT plots in the inset
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S-2: Particle Size Distribution Plots of (a) ZQD [mean particle diameter 5.38+-0.87 nm], (b) 

ZCF1 [mean particle diameter 5.41+-0.39 nm], (c) ZCF2 [mean particle diameter 5.56 +-0.47 

nm]
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S-3: Raman Spectra of (a) ZNC, (b) ZQD, (c) ZCF1, (d) ZCF2
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S-4: Raman peaks detected in the Spectrums of ZNC, ZQD, ZCF1 and ZCF2
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S-5: Near band gap PL emissions of ZQD, ZCF1, ZCF2, ZNC, ZNC2 powders excited at 4.1 
eV.

S-6: EPR plot of ZQD, ZCF1, ZCF2, ZNC
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S-7: (A) PL emissions plots of (a) ZQD, (b)ZCF1 and (c)ZCF2 fitted by Gaussian curve. In all 
cases the PL emission plots can be deconvoluted into two Gaussian curves: one peaked in the 
UV range and another peaked at 545 nm signifying green luminescence. 
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S-7(B): Configuration - coordinate diagram is generally used to describe the emission and 
absorption processes in solids. Here, the ground and excited electronic states, involved in the 
emission or absorption phenomenon, are described by classical quantum mechanical oscillators 
having quantum energy ħω[1] i.e. the emission centres can have their own set of vibrational energy 
states which is E0 + nħω, where n is an integer and E0 represents the ground state energy. Thus, their 
energy minima are displaced due to lattice vibration in the configuration coordinates.[2] Therefore 
the broad emission spectra is consisted of various emission energy ranging from ET = ED - (E0 + nħω), 
where ED represents the energy corresponding to higher energy states. In fact, theoretical 
calculation predicts that the maximum of the emission typically occurs at an excited state for which 
n ~ Huang – Rhys “S” factor.  The significance of S is that it represents the strength of the electron-
phonon interaction and it is calculated theoretically from half-width of the emission spectrum 
according to the following relation: [3, 4] 

     𝐹𝑊𝐻𝑀 = 4(𝑙𝑛2)
1
2(𝑘𝑇𝑆ħ𝜔)

1
2

On the otherhand, within the multi-phonon nonradiative, nonradiative relaxations of excited 

electrons are mediated by the excitation and emission of phonons and the corresponding rate ( ) 𝑘𝑛𝑟

is given by the following relation (3, 4): 

𝑘𝑛𝑟 =
2𝜋
ħ

[𝑉𝑎𝑏(𝑅)]2𝑒𝑥𝑝[ ‒ 𝑆(2𝛾́)]𝐼𝑝(2𝑆[𝛾́(𝛾́ + 1)]
1
2)[𝛾́(𝛾́ + 1)]

𝑝
2

where  is the Bose thermal occupation of phonon mode ħω, p is the exothermicity expressed as 𝛾́

integral number of vibrational quanta, is a modified Bessel function. For further details please 𝐼𝑝 

refer to Ref. 5. 
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S - 8: Decay plot of the PL emissions of ZQD, ZCF1, ZCF2 powders excited at 4.1 eV

S-9: Time resolved PL data for ZnO QD

intensity of PL 
w.r.t. :

Sample. 
Code

τ1 
(μs)

τ2(μs) τ3(μs) τavg(μs) B1 B2 B3 Goodness 
of fit (χ)

τ1 τ2 τ3
ZQD 3.99 22.01 112.7 26.00 2109.459 233.199 21.048 1.212 90 .0 9.80 0.2
ZCF1 4.20 19.63 88.59 26.72 1988.201 290.611 41.823 1.135 85.7 12.5 1.8
ZCF2 5.19 19.37 57.74 18.33 1744.029 401.471 48.782 1.088 79.5 18.3 2.2
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S-10: Standard deviation of the fitted data of S-9

Sample. 
Code

Standard 
deviation in 
τ1 (10-2μs)

Standar
d 
deviatio
n in  
τ2(μs)

Standard 
deviatio
n in τ3 
(μs)

Standard 
deviation in 
B1

Standard 
deviation in 
B2

Standard 
deviation 
in B3

ZQD 5.42 1.11 27.05 18.52 8.63 4.11
ZCF1 7.13 1.10 10.34 20.45 13.88 5.81
ZCF2 1.17 1.28 7.16 27.85 21.04 14.04

S- 11:  Justification for assigning and  to nonradiative and radiative recombination:𝜏1  𝜏2

Defect sites act as a source of non-radiative recombination centre i.e. samples with large defect 
concentration possesses higher decay probability of photo-generated charge carriers via 
nonradiative decay path rather than radiative decay path.[6] Here, we are examining the decay 
process of green emission that originates due to electronic transition between singly charged oxygen 

vacancy (  ) to zinc vacancy (VZn) sites i.e. we are considering decay process involving defect sites. 𝑉 .
𝑜

Thus non-radiative decay is ascribed to be predominant here. If we compare the proportion of the 

decay processes corresponding to and , it may be observed that percentage of the decay  𝜏1  𝜏2

process corresponding to is very high i.e. decay process involving  may be attributed to be non-𝜏1 𝜏1

radiative in nature. As discussed in the manuscript, the defect sites that causes the transition are 
deep level defect sites, thus we have ascribed them as shallow trapped electrons and shallow 
trapped holes. The effect of electron - phonon interaction is also observed from the variation of 
A1(2LO)/A1(LO). It decreases with increasing time, same trend is observed for FWHM of emission 
spectra. 
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