DNA-templated borononucleic acids self assembly : A study of minimal complexity

R. Barbeyron, A. R. Martin, J.-J. Vasseur and M. Smietana

ELECTRONIC SUPPLEMENTARY INFORMATION

	Pages
List of Tables and Figures	S1
General	S2
Syntheses of 5' boronooligonucleotides	S2
Analyses of 5' boronooligonucleotides	
Denaturation experiments	S8
Melting curves and their derivatives	S10

List of Tables and Figures

	Pages
Table S1. Coupling conditions for oligonucleotides syntheses	S2
Table S2. $T_{\rm m}$ values from Figure 6	
Figure S1. Bar-chart representation of Table 2	
Table S3. Results not included in paper tables	S14

<u>General</u>

All reagents were purchased from Aldrich or local suppliers and used without purification. All unmodified oligonucleotides used for this study were purchased from Eurogentec. Synthesized 5' borono-oligonucleotides were purified by RP-HPLC (Dionex Ultimate 3000) with a Nucleodur 100-7 C18 column (125 x 8 mm; Macherey-Nagel) and analyzed with a Nucleodur 100-3 C18 column (75 x 4.6 mm; Macherey-Nagel) and by MALDI-TOF MS (Voyager PerSeptive Biosystems) using trihydroxyacetophenone (THAP) as matrix and ammonium citrate as co-matrix. Thermal denaturation experiments were performed on a VARIAN Cary 300 UV spectrophotometer equipped with a Peltier temperature controller and a thermal analysis software.

Syntheses of 5' boronooligonucleotides

Syntheses were performed in 1µmol scale using an ABI 381A DNA synthesizer by phosphoramidite chemistry with conditions described in Table S1. dT^{bn}-phosphoramidite was synthesized and incorporated at the 5'-end of an oligonucleotide according to previous records.^[1,2]

Step	Reaction	Reagent	Time (s)
1	Deblocking	3% TCA in DCM	35
2	Coupling	0.1M amidite in CH ₃ CN + 0.3M BMT in CH3CN	20
3	Capping	Ac ₂ O/THF/Pyridine + 10% NMI in THF	8
4	Oxidation	0.1M I ₂ in THF/H ₂ O/Pyridine	15

Table S1. Coupling conditions for oligonucleotides syntheses.

¹ D. Luvino, C. Baraguey, M. Smietana, J. J. Vasseur, Chem. Commun. 2008, 2352.

² A. R. Martin, I. Barvik, D. Luvino, M. Smietana, J. J. Vasseur, Angew. Chem. 2011, 50, 4193.

Analyses of 5' boronooligonucleotides

HPLC and MALDI-TOF analysis of B_5 5'-T^{bn}ATGU-3'

HPLC conditions analysis: Column Nucleodur C18, 100 Å, 3 μ m, elution with a linear gradient of 0 to 20% CH₃CN in triethylammonium acetate buffer, pH 7, in 25 min, Flow rate 1 mL.min⁻¹, λ 260 nm.

MALDI-TOF MS conditions analysis: ionization in negative mode, THAP (MW= 168.15 g.mol⁻¹) as matrix and ammonium citrate (MW= 243.2 g.mol⁻¹) as co-matrix, delay time 100 ns and an acceleration voltage of 24 kV.

HPLC and MALDI-TOF analysis of $B_{5'}$ 5'-T^{bn}GTAU-3'

HPLC conditions analysis: Column Nucleodur C18, 100 Å, 3 μ m, elution with a linear gradient of 0 to 20% CH₃CN in triethylammonium acetate buffer, pH 7, in 25 min, Flow rate 1 mL.min⁻¹, λ 260 nm.

MALDI-TOF MS conditions analysis: ionization in negative mode THAP (MW= 168.15 g.mol⁻¹) as matrix and ammonium citrate (MW= 243.2 g.mol⁻¹) as co-matrix, delay time 100 ns and an acceleration voltage of 24 kV.

HPLC and MALDI-TOF analysis of B_4 5'-T^{bn}GTA-3'

HPLC conditions analysis: Column Nucleodur C18, 100 Å, 3 μ m, elution with a linear gradient of 0 to 25% CH₃CN in triethylammonium acetate buffer, pH 7, in 20min, Flow rate 1 mL.min⁻¹, λ 260 nm.

MALDI-TOF MS conditions analysis: ionization in negative mode, THAP (MW= 168.15 g.mol⁻¹) as matrix and ammonium citrate (MW= 243.2 g.mol⁻¹) as co-matrix, delay time 150 ns and an acceleration voltage of 24 kV.

HPLC conditions analysis: Column Nucleodur C18, 100 Å, 3 μ m, elution with a linear gradient of 0 to 25% CH₃CN in triethylammonium acetate buffer, pH 7, in 20min, Flow rate 1 mL.min⁻¹, λ 260 nm.

MALDI-TOF MS conditions analysis: ionization in negative mode, THAP (MW= 168.15 g.mol⁻¹) as matrix and ammonium citrate (MW= 243.2 g.mol⁻¹) as co-matrix, delay time 150 ns and an acceleration voltage of 24 kV.

1 mL.min⁻¹, λ 260 nm.

MALDI-TOF MS conditions analysis: ionization in negative mode, THAP (MW= 168.15 g.mol⁻¹) as matrix and ammonium citrate (MW= 243.2 g.mol⁻¹) as co-matrix, delay time 150 ns and an acceleration voltage of 24 kV.

Denaturation experiments

Unless otherwise stated, the samples were prepared by mixing 3 μ M of the template with stoichiometric amounts of complementary strands. Denaturation experiments were performed in a 1M NaCl, 10mM sodium cacodylate buffer at pH 7.5 or 9.5. A heating-cooling-heating cycle in the 0-90°C temperature range with a gradient of 0.5°C/min was applied.

Tm values were determined from the maxima of the first derivative plots of absorbance at 260 nm versus temperature.

Melting curves and their derivatives

Entry	Bifunctionnal Strand ^a	$T_{\rm m}{}^{\rm b}$ [°C] according to the excess of B _n					
		1 eq	2 eq	3 eq	4 eq	5 eq	6 eq
1	B ₅ T ^{bn} ATGU	$14.9\pm\!\!0.3$	17.1 ± 0.3	19.1 ± 0.3	20.8 ± 0.2	$21.9\pm\!\!0.2$	$22.5\pm\!\!0.4$
2	B ₄ T ^{bn} GTA	7.2 ± 0.2	9.2 ± 0.1	12.0 ± 0.2	14.0 ± 0.1	14.9 ± 0.1	14.0 ± 0.3
3	B ₃ T ^{bn} CA	_c	_c	_c	_c	_c	_c
4	B ₅ with primer	$29.0\pm\!\!0.3$	29.0 ± 0.2	29.0 ± 0.2	n.d. ^d	n.d. ^d	n.d. ^d
5	B ₄ with primer	21.0 ± 0.3	25.0 ± 0.1	26.0 ± 0.1	25.8 ± 0.2	n.d. ^d	n.d. ^d
6	B ₃ with primer	10.7 ± 0.1	13.6 ± 0.2	15.3 ±0.4	15.8 ±0.2	n.d. ^d	n.d. ^d

Table S2 : $T_{\rm m}$ values from Figure 6.

^{*a*} T^{bn} refers to boronothymidine and bold letters represent RNA residues. ^{*b*} Melting temperatures are obtained from the maxima of the first derivatives of the melting curve (A₂₆₀ vs temperature) recorded in a buffer containing 1 M NaCl and 10 mM of sodium cacodylate, Template concentration 3 μ M. Curve fits data were averaged from fits of three denaturation curves. Uncertainties were estimated from standard deviations of experimental melting temperatures. ^{*c*} T_m lower than 5 °C. ^{*d*} Not determined.

Figure S1. Bar-chart representation of Table 2.

Melting temperatures are obtained from the maxima of the first derivatives of the melting curve (A₂₆₀ vs temperature) recorded in a buffer containing 1 M NaCl and 10 mM of sodium cacodylate, Template concentration 3 μ M. Curve fits data were averaged from fits of three denaturation curves.

Melting curves and their derivatives at pH 9.5 of the complex 3'-CC(ATACA)₃CC with 5'-T^{bn}ATGrU 1eq (blue) ; 2eq (orange) ; 3eq (yellow) ; 4eq (green) ; 5eq (brown) and 6eq (cyan).

Melting curves and their derivatives at pH 9.5 of the complex $3'-CC(ACAT)_3CC$ with $5'-T^{bn}GTrA$ leq (blue); 2eq (orange); 3eq (yellow); 4eq (green); 5eq (brown) and 6eq (cyan).

Table S2, entry 3 :

Melting curves and their derivatives at pH 9.5 of the complex 3'-CC(AGT)₃CC with 5'-T^{bn}CrA 1eq (blue) ; 2eq (orange) ; 3eq (yellow) ; 4eq (green) ; 5eq (brown) and 6eq (cyan).

Melting curves and their derivatives at pH 9.5 of the complex 3'-CC(ACATA)₃(AGT)₃CC/5'-GGTCATCATCrA/5'-T^{bn}ATGrU 1eq (blue) ; 2eq (orange) ; 3eq (yellow).

Melting curves and their derivatives at pH 9.5 of the complex 3'-CC(ACAT)₃(AGT)₃CC/5'-GGTCATCATCrA/5'-T^{bn}GTrA 1eq (blue) ; 2eq (orange) ; 3eq (yellow) ; 4eq (green).

Melting curves and their derivatives at pH 9.5 of the complex 3'-CC(AGT)₃(AGT)₃CC/5'-GGTCATCATCrA/5'-T^{bn}CrA leq (blue) ; 2eq (orange) ; 3eq (yellow) ; 4eq (green).

Melting curves and their derivatives of the complex 3'-CC(ATACA)₃(AGT)₃CC/5'-GGTCATCATCrA/5'-TATGrU at pH 7.5 (blue) ; pH 9.5 (orange) ; pH 7.5 3mM CN⁻ (green).

Melting curves and their derivatives of the complex 3'3'-CC(ATACA)₃(AGT)₃CC/5'-GGTCATCATCrA/5'-T^{bn}ATGrU at pH 7.5 (blue) ; pH 9.5 (orange) ; pH 7.5 3mM CN⁻ (green).

Melting curves and their derivatives of the complex 3'-CC(ACAT)₃(AGT)₃CC/5'-GGTCATCATCrA/5'-TGTrA at pH 7.5 (blue) ; pH 9.5 (orange) ; pH 7.5 3mM CN⁻ (green).

GGTCATCATCrA/5'-T^{bn}GTrA at pH 7.5 (blue) ; pH 9.5 (orange) ; pH 7.5 3mM CN⁻ (green).

Entry	Template	Template sequence (5'-3')	Sequences	$T_m [°C]^a$
1	T ₅	CC-(ACATA) ₃ -CC	B ₅ 5eq	pH 7.5 3mM CN ⁻ : 20.2
	T_4	CC-(TACA) ₃ -CC	B ₄ 5eq	pH 7.5 3mM CN ⁻ : 13.0
2	T _{5'}	CC-(ACATA)-ATACA-(ACATA)-CC	B ₅	C
			B _{5'}	_c
			B5+B5'	рН 9.5: 20.0
3	 Т _{4'}	CC-(TACA)-TCAA-(TACA)-CC	B ₄	C
			$B_{4'}$	_c
			$B_4 + B_{4'}$	pH 9.5: 13.5

Table S3. Results not included in paper tables.

^{*a*} Melting temperatures are obtained from the maxima of the first derivatives of the melting curve (A260 vs temperature) recorded in a buffer containing 1 M NaCl and 10 mM of sodium cacodylate, Template concentration 3 μ M. Curve fits data were averaged from fits of three denaturation curves.

Melting curves and derivatives from Table S3.

Melting curves and their derivatives at pH 7.5 with 3mM NaCN of complexes 3'-CC(ATACA)₃CC/5'-T^{bn}ATGrU (blue) and 3'-CC(ACAT)₃CC/5'-T^{bn}GTrA (yellow).

Melting curves and their derivatives at pH 9.5 of template CC-(ACATA)-ATACA-(ACATA)-CC with 5'-T^{bn}ATGrU (blue), 5'-T^{bn}TAGrU (orange) and both bifunctionnal strands (yellow).

Melting curves and their derivatives at pH 9.5 of template CC-(ACAT)-AACT-(ACAT)-CC with 5'-T^{bn}GTrA (blue), 5'-T^{bn}TGrA (orange) and both bifunctionnal strands (yellow).