DNA-templated borononucleic acids self assembly : A study of minimal complexity

R. Barbeyron, A. R. Martin, J.-J. Vasseur and M. Smietana
\section*{ELECTRONIC SUPPLEMENTARY INFORMATION}

Pages
List of Tables and Figures S1
General. S2
Syntheses of 5' boronooligonucleotides S2
Analyses of 5' boronooligonucleotides S3
Denaturation experiments S8
Melting curves and their derivatives S10
List of Tables and Figures
Pages
Table S1. Coupling conditions for oligonucleotides syntheses S2
Table S2. T_{m} values from Figure 6 S8
Figure S1. Bar-chart representation of Table 2 S9
Table S3. Results not included in paper tables. S14

General

All reagents were purchased from Aldrich or local suppliers and used without purification. All unmodified oligonucleotides used for this study were purchased from Eurogentec. Synthesized 5' borono-oligonucleotides were purified by RP-HPLC (Dionex Ultimate 3000) with a Nucleodur 100-7 C18 column ($125 \times 8 \mathrm{~mm}$; Macherey-Nagel) and analyzed with a Nucleodur 100-3 C18 column ($75 \times 4.6 \mathrm{~mm}$; Macherey-Nagel) and by MALDI-TOF MS (Voyager PerSeptive Biosystems) using trihydroxyacetophenone (THAP) as matrix and ammonium citrate as co-matrix. Thermal denaturation experiments were performed on a VARIAN Cary 300 UV spectrophotometer equipped with a Peltier temperature controller and a thermal analysis software.

Syntheses of 5^{\prime} boronooligonucleotides

Syntheses were performed in $1 \mu \mathrm{~mol}$ scale using an ABI 381A DNA synthesizer by phosphoramidite chemistry with conditions described in Table S1. $\mathrm{dT}^{\mathrm{bn}}$-phosphoramidite was synthesized and incorporated at the 5^{\prime}-end of an oligonucleotide according to previous records. ${ }^{[1,2]}$

Table S1. Coupling conditions for oligonucleotides syntheses.

Step	Reaction	Reagent	Time (s)
1	Deblocking	3% TCA in DCM	35
2	Coupling	0.1 M amidite in $\mathrm{CH}_{3} \mathrm{CN}+0.3 \mathrm{M} \mathrm{BMT}$ in CH 3 CN	20
3	Capping	$\mathrm{Ac}_{2} \mathrm{O} / \mathrm{THF} /$ Pyridine $+10 \%$ NMI in THF	8
4	Oxidation	$0.1 \mathrm{M} \mathrm{I}_{2}$ in THF $/ \mathrm{H}_{2} \mathrm{O} /$ Pyridine	15

[^0]
Analyses of 5' boronooligonucleotides

HPLC and MALDI-TOF analysis of $B_{5} 5^{\prime}-T^{b n} A T G \boldsymbol{U}-3^{\prime}$

HPLC conditions analysis: Column Nucleodur C18, $100 \AA, 3 \mu \mathrm{~m}$, elution with a linear gradient of 0 to $20 \% \mathrm{CH}_{3} \mathrm{CN}$ in triethylammonium acetate buffer, pH 7 , in 25 min, Flow rate $1 \mathrm{~mL} . \mathrm{min}^{-1}, \lambda 260 \mathrm{~nm}$.

MALDI-TOF MS conditions analysis: ionization in negative mode, THAP (MW= 168.15 g. mol^{-1}) as matrix and ammonium citrate ($\mathrm{MW}=243.2 \mathrm{~g} \cdot \mathrm{~mol}^{-1}$) as co-matrix, delay time 100 ns and an acceleration voltage of 24 kV .

HPLC conditions analysis: Column Nucleodur C18, $100 \AA, 3 \mu \mathrm{~m}$, elution with a linear gradient of 0 to $20 \% \mathrm{CH}_{3} \mathrm{CN}$ in triethylammonium acetate buffer, pH 7 , in 25 min, Flow rate $1 \mathrm{~mL} \cdot \mathrm{~min}^{-1}, \lambda 260 \mathrm{~nm}$.

MALDI-TOF MS conditions analysis: ionization in negative mode THAP (MW= 168.15 g. mol^{-1}) as matrix and ammonium citrate ($\mathrm{MW}=243.2 \mathrm{~g} \cdot \mathrm{~mol}^{-1}$) as co-matrix, delay time 100 ns and an acceleration voltage of 24 kV .

HPLC conditions analysis: Column Nucleodur C18, $100 \AA, 3 \mu \mathrm{~m}$, elution with a linear gradient of 0 to $25 \% \mathrm{CH}_{3} \mathrm{CN}$ in triethylammonium acetate buffer, pH 7 , in 20 min , Flow rate $1 \mathrm{~mL} . \mathrm{min}^{-1}, \lambda 260 \mathrm{~nm}$.

MALDI-TOF MS conditions analysis: ionization in negative mode, THAP (MW=168.15 $\mathrm{g} . \mathrm{mol}^{-1}$) as matrix and ammonium citrate ($\mathrm{MW}=243.2 \mathrm{~g} \cdot \mathrm{~mol}^{-1}$) as co-matrix, delay time 150 ns and an acceleration voltage of 24 kV .

HPLC conditions analysis: Column Nucleodur C18, $100 \AA, 3 \mu \mathrm{~m}$, elution with a linear gradient of 0 to $25 \% \mathrm{CH}_{3} \mathrm{CN}$ in triethylammonium acetate buffer, pH 7 , in 20min, Flow rate $1 \mathrm{~mL} \cdot \mathrm{~min}^{-1}, \lambda 260 \mathrm{~nm}$.

MALDI-TOF MS conditions analysis: ionization in negative mode, THAP (MW= 168.15 $\mathrm{g} . \mathrm{mol}^{-1}$) as matrix and ammonium citrate ($\mathrm{MW}=243.2 \mathrm{~g} \cdot \mathrm{~mol}^{-1}$) as co-matrix, delay time 150 ns and an acceleration voltage of 24 kV .

HPLC conditions analysis: Column Nucleodur C18, $100 \AA, 3 \mu \mathrm{~m}$, elution with a linear gradient of 0 to $16 \% \mathrm{CH}_{3} \mathrm{CN}$ in triethylammonium acetate buffer, pH 7 , in 20 min , Flow rate $1 \mathrm{~mL} \cdot \mathrm{~min}^{-1}, \lambda 260 \mathrm{~nm}$.

MALDI-TOF MS conditions analysis: ionization in negative mode, THAP (MW=168.15 $\mathrm{g} . \mathrm{mol}^{-1}$) as matrix and ammonium citrate ($\mathrm{MW}=243.2 \mathrm{~g} \cdot \mathrm{~mol}^{-1}$) as co-matrix, delay time 150 ns and an acceleration voltage of 24 kV .

Denaturation experiments

Unless otherwise stated, the samples were prepared by mixing $3 \mu \mathrm{M}$ of the template with stoichiometric amounts of complementary strands. Denaturation experiments were performed in a $1 \mathrm{M} \mathrm{NaCl}, 10 \mathrm{mM}$ sodium cacodylate buffer at pH 7.5 or 9.5 . A heating-cooling-heating cycle in the $0-90^{\circ} \mathrm{C}$ temperature range with a gradient of $0.5^{\circ} \mathrm{C} / \mathrm{min}$ was applied.
Tm values were determined from the maxima of the first derivative plots of absorbance at 260 nm versus temperature.

Melting curves and their derivatives
Table $\mathrm{S} 2: \boldsymbol{T}_{\mathrm{m}}$ values from Figure 6.

Entry	BifunctionnalStrand a	$T_{\mathrm{m}}{ }^{\text {b }}\left[{ }^{\circ} \mathrm{C}\right]$ according to the excess of B_{n}					
		1 eq	2 eq	3 eq	4 eq	5 eq	6 eq
1	$\mathrm{B}_{5} \mathrm{~T}^{\mathrm{bn}} \mathrm{ATGU}$	14.9 ± 0.3	17.1 ± 0.3	19.1 ± 0.3	20.8 ± 0.2	21.9 ± 0.2	22.5 ± 0.4
2	$\mathrm{B}_{4} \mathrm{~T}^{\mathrm{bn}} \mathrm{GTA}$	7.2 ± 0.2	9.2 ± 0.1	12.0 ± 0.2	14.0 ± 0.1	14.9 ± 0.1	14.0 ± 0.3
3	$\mathrm{B}_{3} \mathrm{Tbn}^{\mathrm{bn}} \mathrm{CA}$	-c	-c	-c	-c	-c	-c
4	B_{5} with primer	29.0 ± 0.3	29.0 ± 0.2	29.0 ± 0.2	n.d. ${ }^{\text {d }}$	n.d. ${ }^{\text {d }}$	n.d. ${ }^{\text {d }}$
5	B_{4} with primer	21.0 ± 0.3	25.0 ± 0.1	26.0 ± 0.1	25.8 ± 0.2	n.d. ${ }^{\text {d }}$	n.d. ${ }^{\text {d }}$
6	B_{3} with primer	10.7 ± 0.1	13.6 ± 0.2	15.3 ± 0.4	15.8 ± 0.2	n.d. ${ }^{\text {d }}$	n.d. ${ }^{\text {d }}$

${ }^{a} \mathrm{~T}^{\text {bn }}$ refers to boronothymidine and bold letters represent RNA residues. ${ }^{b}$ Melting temperatures are obtained from the maxima of the first derivatives of the melting curve (A_{260} vs temperature) recorded in a buffer containing 1 M NaCl and 10 mM of sodium cacodylate, Template concentration $3 \mu \mathrm{M}$. Curve fits data were averaged from fits of three denaturation curves. Uncertainties were estimated from standard deviations of experimental melting temperatures. ${ }^{c} T_{\mathrm{m}}$ lower than $5{ }^{\circ} \mathrm{C}$. ${ }^{d}$ Not determined.

Figure S1. Bar-chart representation of Table 2.

Melting temperatures are obtained from the maxima of the first derivatives of the melting curve (A_{260} vs temperature) recorded in a buffer containing 1 M NaCl and 10 mM of sodium cacodylate, Template concentration $3 \mu \mathrm{M}$. Curve fits data were averaged from fits of three denaturation curves.

Melting curves and derivatives from Table S2.

Table S2, entry 1 :

Melting curves and their derivatives at pH 9.5 of the complex $3^{\prime}-\mathrm{CC}(\mathrm{ATACA})_{3} \mathrm{CC}$ with $5^{\prime}-\mathrm{T}^{\mathrm{bn}} \mathrm{ATGrU}$ 1eq (blue) ; 2eq (orange) ; 3eq (yellow) ; 4eq (green); 5eq (brown) and 6eq (cyan).

Table S2, entry 2 :

Melting curves and their derivatives at pH 9.5 of the complex $3^{\prime}-\mathrm{CC}(\mathrm{ACAT})_{3} \mathrm{CC}$ with $5^{\prime}-\mathrm{T}^{\mathrm{bn}} \mathrm{GTrA}$ leq (blue) ; 2eq (orange) ; 3eq (yellow) ; 4eq (green) ; 5eq (brown) and 6eq (cyan).

Table S2, entry 3 :

Melting curves and their derivatives at pH 9.5 of the complex $3^{\prime}-\mathrm{CC}(\mathrm{AGT})_{3} \mathrm{CC}$ with 5'- ${ }^{\mathrm{bn}} \mathrm{CrA} 1 \mathrm{eq}$ (blue) ; 2eq (orange) ; 3eq (yellow) ; 4eq (green) ; 5eq (brown) and 6eq (cyan).

Table S2, entry 4 :

Melting curves and their derivatives at pH 9.5 of the complex 3^{\prime}-CC(ACATA) $)_{3}(A G T)_{3} \mathrm{CC} / 5^{\prime}$ '-GGTCATCATCrA/5'- $\mathrm{T}^{\text {bn }}$ ATGrU 1eq (blue) ; 2eq (orange) ; 3eq (yellow).

Table S2, entry 5 :

Melting curves and their derivatives at pH 9.5 of the complex $3^{\prime}-\mathrm{CC}(\mathrm{ACAT})_{3}(\mathrm{AGT})_{3} \mathrm{CC} / 5^{\prime}$ '-GGTCATCATCrA/5'- T^{bn} GTrA 1eq (blue) ; 2eq (orange) ; 3eq (yellow) ; 4eq (green).

Table S2, entry 6 :

Melting curves and their derivatives at pH 9.5 of the complex $3^{\prime}-\mathrm{CC}(\mathrm{AGT})_{3}(\mathrm{AGT})_{3} \mathrm{CC} / 5^{\prime}$ '-GGTCATCATCrA/5'-T ${ }^{\text {bn }}$ CrA leq (blue) ; 2eq (orange) ; 3eq (yellow) ; 4eq (green).

Melting curves and derivatives from Table 3.

Table 3, entry 1 :

Melting curves and their derivatives of the complex 3^{\prime}-CC(ATACA) $)_{3}(A G T)_{3} C C / 5^{\prime}$ -GGTCATCATCrA/5'-TATGrU at pH 7.5 (blue) ; pH 9.5 (orange) ; pH 7.53 mM CN - (green).

Melting curves and their derivatives of the complex $3^{\prime} 3^{\prime}$-CC(ATACA) $)_{3}(A G T)_{3} \mathrm{CC} / 5^{\prime}{ }^{\prime}$ -GGTCATCATCrA/5'-T ${ }^{\mathrm{bn}} \mathrm{ATGrU}$ at pH 7.5 (blue) ; pH 9.5 (orange) ; pH 7.53 mM CN (green).

Table 3, entry 2 :

Melting curves and their derivatives of the complex 3^{\prime} - $\mathrm{CC}(\mathrm{ACAT})_{3}(\mathrm{AGT})_{3} \mathrm{CC} / 5^{\prime}$ '-GGTCATCATCrA/5'-TGTrA at pH 7.5 (blue) ; pH 9.5 (orange) ; pH 7.53 mM CN - (green).

Melting curves and their derivatives of the complex $3^{\prime}-\mathrm{CC}(\mathrm{ACAT})_{3}(\mathrm{AGT})_{3} \mathrm{CC} / 5^{\prime}$ '-GGTCATCATCrA/5'- $\mathrm{T}^{\mathrm{bn}} \mathrm{GTrA}$ at pH 7.5 (blue) ; pH 9.5 (orange) ; $\mathrm{pH} 7.53 \mathrm{mM} \mathrm{CN}^{-}$(green).

Table 3, entry 3 :

Melting curves and their derivatives of the complex 3^{\prime} - $\mathrm{CC}(\mathrm{AGT})_{6} \mathrm{CC} / 5^{\prime}$ '-GGTCATCATCrA/5'-TCrA at pH 7.5 (blue) ; pH 9.5 (orange) ; pH $7.53 \mathrm{mM} \mathrm{CN}{ }^{-}$(green).

Melting curves and their derivatives of the complex 3^{\prime} - $\mathrm{CC}(\mathrm{AGT})_{6} \mathrm{CC} / 5^{\prime}$ '-GGTCATCATCrA/5'- ${ }^{\text {bn }} \mathrm{CrA}$ at pH 7.5 (blue) ; pH 9.5 (orange) ; pH 7.53 mM CN - (green).

Table S3. Results not included in paper tables.

Entry	Template	Template sequence ($5^{\prime}-3^{\prime}$)	Sequences	$\mathrm{T}_{m}\left[{ }^{\circ} \mathrm{C}\right]^{\mathrm{a}}$
1	T_{5}	CC-(ACATA) 3_{3}-CC	$\mathrm{B}_{5} 5 \mathrm{eq}$	pH 7.53 mM CN : 20.2
	T_{4}	CC-(TACA) 3_{3}-CC	$\mathrm{B}_{4} 5 \mathrm{eq}$	pH 7.53 mM CN - 13.0
2			B_{5}	_c
	$\mathrm{T}_{5}{ }^{\prime}$	CC-(ACATA)-ATACA-(ACATA)-CC	B_{5}	_c
			$\mathrm{B}_{5}+\mathrm{B}_{5}{ }^{\prime}$	pH 9.5: 20.0
3			B_{4}	-c
	T_{4}	CC-(TACA)-TCAA-(TACA)-CC	B_{4}	-c
			$\mathrm{B}_{4}+\mathrm{B}_{4}{ }^{\prime}$	pH 9.5: 13.5

${ }^{a}$ Melting temperatures are obtained from the maxima of the first derivatives of the melting curve (A260 vs temperature) recorded in a buffer containing 1 M NaCl and 10 mM of sodium cacodylate, Template concentration $3 \mu \mathrm{M}$. Curve fits data were averaged from fits of three denaturation curves.

Melting curves and derivatives from Table S3.

Table S3, entry 1 :

Melting curves and their derivatives at pH 7.5 with 3 mM NaCN of complexes $3^{\prime}-\mathrm{CC}(\mathrm{ATACA})_{3} \mathrm{CC} / 5^{\prime}-\mathrm{T}^{\mathrm{bn}} \mathrm{ATGrU}$ (blue) and $3^{\prime}-\mathrm{CC}(\mathrm{ACAT})_{3} \mathrm{CC} / 5^{\prime}-\mathrm{T}^{\mathrm{bn}} \mathrm{GTrA}$ (yellow).

Table S3, entry 2 :

Melting curves and their derivatives at pH 9.5 of template CC-(ACATA)-ATACA-(ACATA)CC with $5^{\prime}-\mathrm{T}^{\mathrm{bn}} \mathrm{ATGrU}$ (blue), $5^{\prime}-\mathrm{T}^{\mathrm{bn}} \mathrm{TAGrU}$ (orange) and both bifunctionnal strands (yellow).

Table S3, entry 3 :

Melting curves and their derivatives at pH 9.5 of template CC-(ACAT)-AACT-(ACAT)-CC with $5^{\prime}-\mathrm{T}^{\mathrm{bn}} \mathrm{GTrA}$ (blue), $5^{\prime}-\mathrm{T}^{\mathrm{bn}} \mathrm{TGrA}$ (orange) and both bifunctionnal strands (yellow).

[^0]: ${ }^{1}$ D. Luvino, C. Baraguey, M. Smietana, J. J. Vasseur, Chem. Commun. 2008, 2352.
 ${ }^{2}$ A. R. Martin, I. Barvik, D. Luvino, M. Smietana, J. J. Vasseur, Angew. Chem. 2011, 50, 4193.

