A NIR-to-NIR upconversion luminescence system for security printing applications

A. Baride,^{*a*} J. M. Meruga,^{*b*} C. Douma,^{*a*} D. Langerman,^{*c*} G. Crawford,^{*b*} J. J. Kellar,^{*b*} W. M. Cross^{*b*} and P. S. May^{**a*}

¹ Department of Chemistry, University of South Dakota, 414 E Clark St., Vermillion, SD 57069

² Materials and Metallurgical Engineering, ³ Electrical and Computer Engineering, South Dakota School of

Mines and Technology, 501 E Saint Joseph St., Rapid City, SD 57701

Figure S1: TEM image of synthesized UCNPs indicates hexagonal NaYF₄ nanoparticles

Figure S2: PXRD of synthesized UCNPs indicates phase pure β -NaYF₄ nanoparticles

Figure S3: Power dependent emission response of blue UCNPs (25-0.3) excited with 980 nm normalized to the peak at 700 nm. The emission spectrum with bands at 700 nm (${}^{3}F_{3} \rightarrow {}^{3}H_{6}$) and 800 nm (${}^{3}H_{4} \rightarrow {}^{3}H_{6}$) show similar power dependence trends. The 800 nm emission intensity is reduced to 0.01 x of actual in order to fit in the scale.

Figure S4: Dependence of blue and NIR (800 nm) upconversion intensity (I) from UCNPs(25-0.3) on 980 nm excitation power (P). Excitation was provided by a 980 nm CW laser. Blue UC exhibits a stronger power dependence relative to NIR UC due to excitation occurring via a higher-order process (three-photon vs. two-photon). The NIR-to-blue intensity ratio is 400 at 6.2 W/cm² excitation power, and decreases to 100 at 35 W/cm².