RSC Advances Supporting Information

Critical role of silk fibroin secondary structure on the dielectric performances of organic thin-film transistors

Min Hong Park,^{a†} Junhyung Kim,^{b†} Seung Chul Lee,^b Se Youn Cho,^a Na Rae Kim,^a Boseok Kang,^c Eunjoo Song,^c Kilwon Cho,^c Hyoung-Joon Jin,^{a*} and Wi Hyoung Lee,^{ba)*}

^aDepartment of Polymer Science and Engineering, Inha University, Incheon 402-751, Korea

^bDepartment of Organic and Nano System Engineering, Konkuk University, Seoul 143-701, Korea

^cDepartment of Chemical Engineering, Pohang University of Science and Technology, Pohang 790-784, Korea

[†]M. H. Park and J. Kim contributed equally to this work.

^{*} Corresponding authors E-mail: hjjin@inha.ac.kr, whlee78@konkuk.ac.kr

Supporting Figure S1. AFM image of pentacene film on SiO_2 dielectric.

Supporting Figure S2. 2D-GIXRD pattern of pentacene film on SiO₂ dielectric.

Supporting Figure S3. Transfer characteristics of pentacene TFTs with SiO_2 dielectric.

Supporting Figure S4. Capacitances of SFF and SFF-Me dielectrics as a function of frequency.

Supporting Figure S5. (a) Gate bias stability of pentacene TFTs with SiO₂ dielectric. Bias of $V_{GS} = -80$ V and $V_{DS} = -3V$ were applied on the FETs and transfer characteristics were measured at the given time intervals. Extracted on-current decays from (a) were plotted in (b).