Supplementary Information

On the structure of high performance anticorrosive PMMA-Siloxane-Silica hybrid

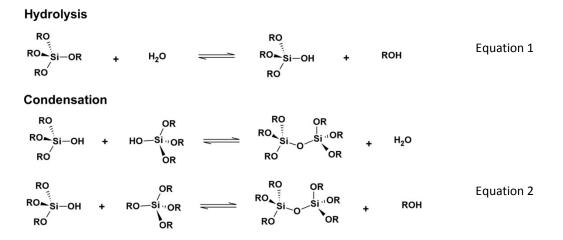
coatings

Fábio C. dos Santos^a, Samarah V. Harb^a, Marie-Joëlle Menu^b, Viviane Turq^b, Sandra H. Pulcinelli^a, Celso V.

Santilli^a, Peter Hammer^{a*}

^a Instituto de Química, UNESP-Univ Estadual Paulista,

14800-060 Araraquara, SP, Brazil


^b Université Paul Sabatier - Toulouse III, 31062

Toulouse Cedex 9, France

Corresponding Author

To whom correspondence should be addressed.

*Prof. Dr. Peter Hammer, E-mail: peter@iq.unesp.br

Scheme S1. Hydrolysis and condensation reactions of the sol-gel process.

Method of the SAXS analysis

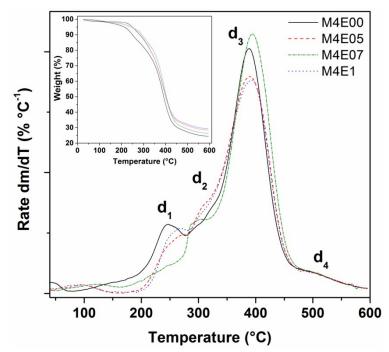
Assuming an isotropic system of a set isolated silica-siloxane particles nanoparticles embedded in a homogeneous PMMA matrix, with a spatial correlation evidenced by the maximum in the ME05, the experimental SAXS intensity was fitted by the semi-empirical function proposed by Beaucage:¹⁷

$$I(q) = [G \exp(-q^2 R_g^2/3) + B[[erf(q R_g \sqrt{6})]^3/q]^{\alpha}] S(q)$$
(1)

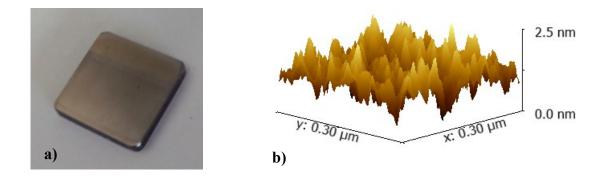
where R_g is the Guinier radius of gyration of the isolated nanoparticles. For a two-electron density model, G and B are are adjustable parameters given by $G = N (\rho_p - \rho_m)^2 V_2$ and $B = 2\pi (\rho_p - \rho_m)^2 A$, where N is the number of particles per unit volume, V is the particle volume, A is the interface area between the particles and the matrix and $(\rho_p \text{ and } \rho_m)$ are average electron densities of the particles and the matrix, respectively.

In Eq. (1), the asymptotic Guinier and Porod laws are merged. The *erf* function acts as a low q cut-off that brings to zero the Porod law contribution at a point depending on the R_g parameter. For a system with a diluted set of nanoparticles the interference effects of intensity scattered by each particle is absent and structure function is equal to unity S(q) = 1.

In the case of semi-diluted the interference effect was take accounts considering the structure-function S(q) for spherical particles, in which the only correlation is a hard sphere interaction, is given by ¹⁷:


$$S(q) = 1/(1+k\theta)$$
⁽²⁾

The packing factor k describes the degree of correlation that measures the number of nearest neighbour particles and is equivalent to $8V/V_0$ where V is the average "hard-core" volume and V_0 is the average available volume for each sphere. The form function, θ , depends on the average inter-particle distance, d, as follows:


$$\theta(q) = 3[\sin(qd) - q d \cos(q d)]/(q d)^3$$
(3)

where d is the average distance between nanoparticles. Equation (3) was derived for systems of identical spatially correlated nanoparticles, but it is usually also applied, to systems of correlated particles with a narrow or moderate width of size distribution.

The experimental SAXS curves were fitted with equation (1) using a no linear least square procedure, leading to the continuous lines displayed in Fig. 2.

Figure S1. DTG and TG (inset) curves of PMMA-SS hybrids, prepared at EtOH/H₂O molar ratios ranging from 0.0 to 1.0, indicate the existence of four degradation stages: rupture of the head-to-head segments at ~250 °C (d₁) and to unsaturated chain ends at ~310 °C (d₂), random scissions of the polymer chains ~400 °C (d₃) and partial dehydration of residual silanol groups ~480 °C (d₄).

Figure S2. a) Representative image of the PMMA-SS hybrid coated carbon steel, and b) AFM topography of the flat and featureless surface of sample M4E05.

	Critical loads (mN)							
Event / Sample	M4E00	M4E01	M4E02	M4E05	M4E1			
Plastic deformation	1.7 ±0.6	0.4±0.1	0.4±0.1	1.0 ±0.9	0.3 ±0.1			
Initial cracks	21.8 ±0.6	19.5±0.5	17.5±1.0	19.2 ±0.2	17.5 ±1.2			
Film delamination	not observed	Not observed	not observed	not observed	not observed			

Table S2. Parameters of the electrical equivalent circuit for sample M4E05 after 1 day exposure and M4E02 after 1 day and 196 days immersion in neutral 3.5% NaCl solution.

Sample	M4E05 (1day)		M4E02 (1day)		M4E02 (196 days)	
χ ²	1.9 x 10 ⁻⁴		0.63 x 10 ⁻³		1.6 x 10 ⁻³	
R_1 (Ω cm ²)	1.63 x 10 ⁷	(5.80)	2.37 x 10 ⁷	(13.9)	2.05 x 10 ⁷	(7.87)
CPE ₁ (F cm ⁻² s ⁿ⁻¹)	4.50 x 10 ⁻⁹	(0.50)	2.08 x 10 ⁻⁹	(1.07)	2.71 x 10 ⁻⁹	(1.70)
n ₁	0.97	(0.10)	0.97	(0.12)	0.95	(0.22)
R_2 (Ω cm ²)	1.68 x 10 ⁹	(1.00)	4.59 x 10 ⁹	(5.25)	7.26 x 10 ⁸	(1.78)
CPE ₂ (F cm ⁻² s ⁿ⁻¹)	2.3 x 10 ⁻⁹	(0.86)	2.19 x 10 ⁻⁹	(0.75)	3.69 x 10 ⁻⁹	(1.29)
n ₂	0.69	(0.39)	0.56	(0.92)	0.69	(1.04)

Values between brackets represent the fitting errors (%).