Electronic Supplementary Information (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2015

Butane detection: W-doped TiO₂ nanoparticles for butane gas sensor with high sensitivity and fast response/recovery

Xu Liu,^{*a*} Kaimeng Pan,^{*a*} Lihong Wang,^{*a*} Chengjun Dong,^{*a*} Xuechun Xiao,^{*a*} and Yude Wang*^{*a*,*b*}

^aSchool of Physics Science and Technology, Yunnan University, 650091 Kunming, People's Republic of China.

^bYunnan Province Key Lab of Micro-Nano Materials and Technology, Yunnan University, 650091 Kunming, People's Republic of China. Fax: +8687165153832; Tel: +8687165031124; E-mail: ydwang@ynu.edu.cn.

calculated by Rietveld refinement of the experimen	tal XRD powder pattern.
Space group	<i>I</i> 4 ₁ / <i>amd</i> (141)
Lattice parameters	
<i>a</i> (Å)	3.7928
<i>b</i> (Å)	3.7928
<i>c</i> (Å)	9.5064
Ti/W	
x	0
у	0
Z	0
0	
x	0
у	0
Ζ	0.2126
Average crystallite size (nm)	7.75
Average maximum strain (10 ⁻³)	3.735
R_{WP} (%)	19.6
<i>R</i> _P (%)	14.4

Table S1. Structural data and refinement parameters for 5%W-TiO₂ nanoparticles

Sample	т	k	R^2
TiO ₂	-0.0066	5.6816	0.9639
2.5%W-TiO ₂	-0.0063	5.5390	0.9835
5.0%W-TiO ₂	-0.0097	6.3100	0.9950
7.5%W-TiO ₂	-0.0067	5.1750	0.9793

 Table S2. The fitted equation for different sensors.

Fig. S1 (a) the schematic structure of the gas sensor, (b) A photograph of the WS-30 A testing system, (c) the basic testing principle (where V_h is the heating voltage, R_L is a constant load resistance, V_{out} is the sensor export voltage, and V_c is the working voltage (5V).)

According to Fig. S1(c), the electrical resistance of the sensor can be calculated as following:

$$R = \frac{5 - V_{\text{out}}}{V_{\text{out}}} \cdot R_{\text{I}}$$

And the gas response defined as the ratio of the resistance of the sensor in air (R_0) to that in gas (R_g):

$$R_{0} = \frac{5 - (V_{\text{out}})_{\text{air}}}{(V_{\text{out}})_{\text{air}}} \cdot R_{\text{L}}, \quad R_{\text{g}} = \frac{5 - (V_{\text{out}})_{\text{g}}}{(V_{\text{out}})_{\text{g}}} \cdot R_{\text{L}}, \quad \beta = \frac{R_{0}}{R_{\text{g}}}$$

where $(V_{out})_{air}$ is the export voltage in air, and $(V_{out})_{gas}$ is that in gas.

Fig. S2 TEM imagine of as-prepared pure TiO_2 nanoparticles.

Fig. S3 High-resolution XPS spectra of O1s of as-prepared pure TiO₂

nanoparticles.

Fig. S4 Schematic diagram of the butane sensing mechanism.

The oxygen species absorbed from air onto the surface of TiO_2 nanoparticle capture the free electrons from the sensing materials, which leads to the formation of absorbed oxygen ions (O_x^2 , O_{ads}^2 or O_{ads}^{2-}) and a consequent thick space layer as well as a high resistance of the sensor. During these processes, following reactions happens:

$$O_{2gas} ↔ O_{2ads}$$

 $O_{2ads} + e^{-} ↔ O_{2ads}^{-}$
 $O_{2ads}^{-} + e^{-} ↔ 2O_{ads}^{-}$
 $O_{ads}^{-} + e^{-} ↔ O_{ads}^{2-}$

When the sensor exposed to butane, butane would react with the formed absorbed oxygen ions and the captured electrons would be released, leading to a thinner spacecharge layer. Such the process results in a decrease of the resistance and can be described as following equations:

$$(C_4H_{10})_{gas} \leftrightarrow (C_4H_{10})_{ads}$$
$$(C_4H_{10})_{ads} + 13O_{ads}^- \rightarrow 4CO_2 + 5H_2O + 13e^{-1}$$
$$(C_4H_{10})_{ads} + 13O_{ads}^{2-} \rightarrow 4CO_2 + 5H_2O + 26e^{-1}$$