5

8

Supplementary Information for

catalytic dehydrochlorination of 1, 2-dichloroethane

to produce vinyl chloride over N-doped cocoanut

4 activated carbon

6	Wei Zhao ^a , Mengxia Sun ^a , Haiyang Zhang ^a , Yanzhao Dong ^a , Xiaoyan

7 Li a, Wei Li a, Jinli Zhang *a,b

9 ^a School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072,

People's Republic of China.

11 b School of Chemistry & Chemical Engineering, Shihezi University, Xinjiang, Shihezi

12 832000, People's Republic of China.

* To whom correspondence may be addressed.

14 Fax: +86-22-2740-3389; Tel: +86-22-2789-0643.

15 *E-mail address*: zhangjinli@tju.edu.cn (J.L. Zhang)

- 1 Table of contents:
- **Table S1.** Bulk phase mass composition of catalysts tested by elemental analyses.
- **Table S2.** Desorption amount of the fresh catalysts, determined by TPD measurement.
- **Table S3.** Surface element content of the catalysts determined by XPS.
- 5 Table S4. The relative contents and binding energies of nitrogen species in the
- 6 catalysts.
- **Table S5.** Pore structure parameters of the catalysts test by N_2 adsorption-desorption.

- **Fig. S1.** Experimental catalyst testing setup.
- **Fig. S2.** Effect of temperature on catalytic performance.
- **Fig. S3.** Nitrogen adsorption-desorption isotherms of fresh and used catalysts.
- **Fig. S4.** Raman spectroscopy for fresh and used catalysts.
- **Fig. S5.** Thermogravimetric analysis (TGA) curves recorded in air atmosphere of
- 14 fresh and used catalysts.
- **Fig. S6.** High-resolution XPS spectra of N 1s for fresh and used catalysts.
- **Fig. S7.** High-resolution XPS spectra of Cl 2p for used catalysts.
- **Fig. S8.** The geometries of the substances involved in the reaction path.
- **Fig. S9.** Conversion of 1,2-DCE over different catalysts.
- **Fig. S10.** High-resolution XPS spectra of N 1s for the catalysts.

1 Catalyst characterization

- 2 Elemental analyses was performed by vario EL CUBE elemental analyzer from
- 3 ELEMENTAR in Germany.

5 Table S1

4

6 Bulk phase mass composition of catalysts tested by elemental analyses.

Samples _	Element content of fresh catalysts (wt%)		Element content of used catalysts (wt%)			
	С	Н	N	С	Н	N
AC	93.68	2.39	0.48	92.43	2.52	0.41
700-AC	93.96	2.21	0.41	92.02	2.48	0.47
0.5:10-N-AC	93.17	2.17	1.84	90.16	2.93	1.88
1:10-N-AC	92.14	2.19	2.98	89.05	2.69	2.85
2:10-N-AC	91.09	1.91	4.23	88.35	2.88	4.35
5:10-N-AC	89.73	1.99	5.66	87.66	2.61	5.31
7:10-N-AC	89.34	1.94	6.08	87.15	2.73	5.54

8 Table S2

7

9 Desorption amount of the fresh catalysts, determined by TPD measurement.

Samples	Desorption area of EDC	Desorption area of HCl	Desorption area of VCM
Initial AC	4959	38	1749
700-AC	5301	47	2322
0.5:10-700-N-AC	6183	571	3038
1:10-700-N-AC	7229	943	3709
2:10-700-N-AC	7910	1290	4214
5:10-700-N-AC	8465	1836	5423
7:10-700-N-AC	8892	2137	6255

¹⁰ For the 1,2-DCE-TPD test, sample amount of AC, 700-AC, 0.5:10-N-AC, 1:10-N-AC,

^{11 2:10-}N-AC, 5:10-N-AC, 7:10-N-AC: 180 mg, 169 mg, 144 mg, 123 mg, 114 mg, 106

¹² mg, 100 mg.

¹³ For the HCl–TPD test, sample amount of AC, 700-AC, 0.5:10-N-AC, 1:10-N-AC,

^{14 2:10-}N-AC, 5:10-N-AC, 7:10-N-AC: 370 mg, 250 mg, 19 mg, 11 mg, 8 mg, 6 mg, 5 mg.

¹⁶ For the VCM-TPD test, sample amount of AC, 700-AC, 0.5:10-N-AC, 1:10-N-AC,

^{17 2:10-}N-AC, 5:10-N-AC, 7:10-N-AC: 179 mg, 136 mg, 102 mg, 83 mg, 74 mg, 58 mg, 18 50 mg.

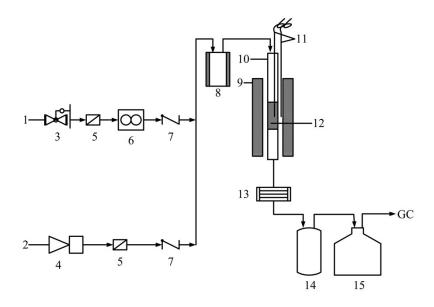


Fig. S1. Experimental catalyst testing setup.

- 1. Nitrogen, 2. EDC, 3. Pressure relief valve, 4. Micro-injection pump, 5. Filter, 6.
- 4 Mass flowmeter, 7. One-way check valve, 8. Vaporizing chamber, 9. Furnace, 10.
- 5 Reactor, 11. Thermocouple, 12. Catalyst, 13. Condenser, 14. Buffer tank, 15.

6 Absorption bottle.

1

7

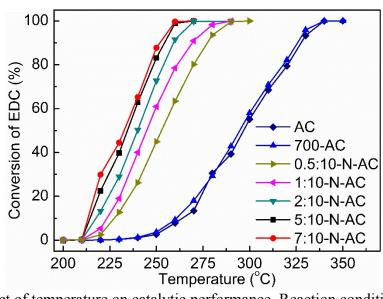
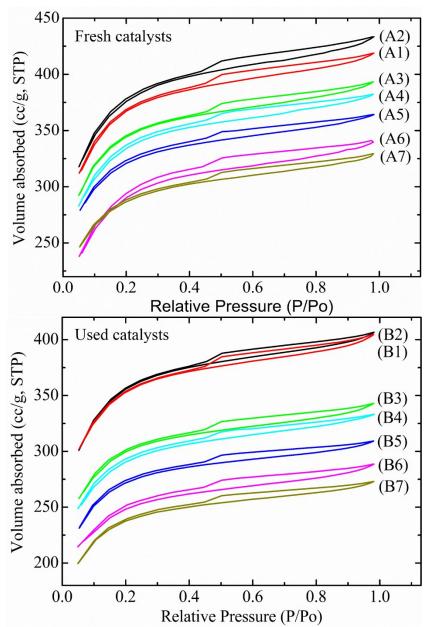
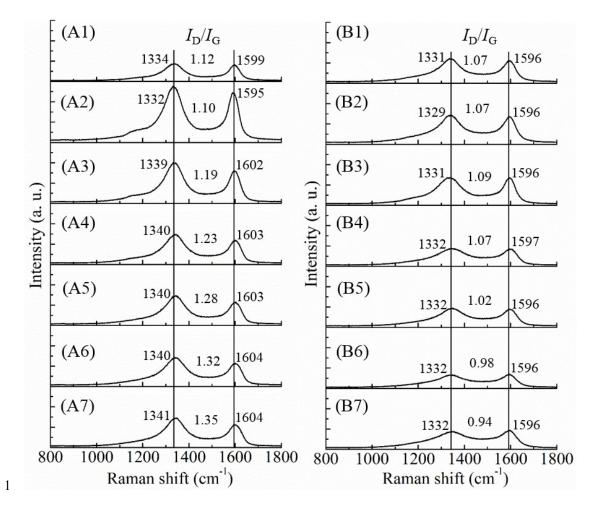
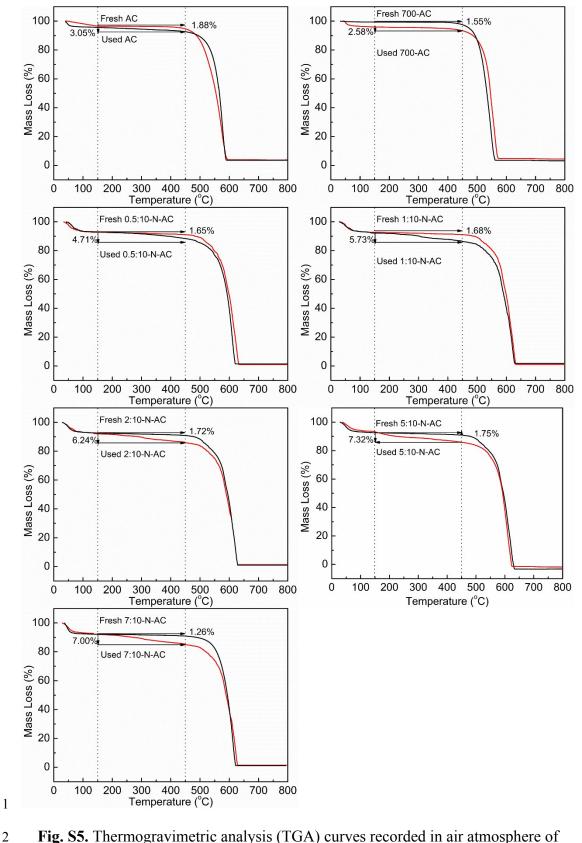


Fig. S2. Effect of temperature on catalytic performance. Reaction conditions: 0.1 MPa,

10 LHSV (EDC) = 0.2 h^{-1} .


Fig. S3. Nitrogen adsorption-desorption isotherms of fresh and used catalysts. A1-A7:

- 3 fresh AC, fresh 700-AC, fresh 0.5:10-N-AC, fresh 1:10-N-AC, fresh 2:10-N-AC,
- 4 fresh 5:10-N-AC, fresh 7:10-N-AC; B1-B7: used AC, used 700-AC, used 0.5:10-N-
- 5 AC, used 1:10-N-AC, used 2:10-N-AC, used 5:10-N-AC, used 7:10-N-AC. All the
- 6 isotherms belonged to type I curves, and due to abundant micropore structure in
- activated carbon, the H4 adsorption–desorption hysteresis loop based on IUPAC
- 8 nomenclature could be observed in the isotherms.

2 Fig. S4. Raman spectroscopy for fresh and used catalysts. A1-A7: fresh AC, fresh

- 3 700-AC, fresh 0.5:10-N-AC, fresh 1:10-N-AC, fresh 2:10-N-AC, fresh 5:10-N-AC,
- 4 fresh 7:10-N-AC; B1-B7: used AC, used 700-AC, used 0.5:10-N-AC, used 1:10-N-
- 5 AC, used 2:10-N-AC, used 5:10-N-AC, used 7:10-N-AC.

Fig. S5. Thermogravimetric analysis (TGA) curves recorded in air atmosphere of fresh and used catalysts.

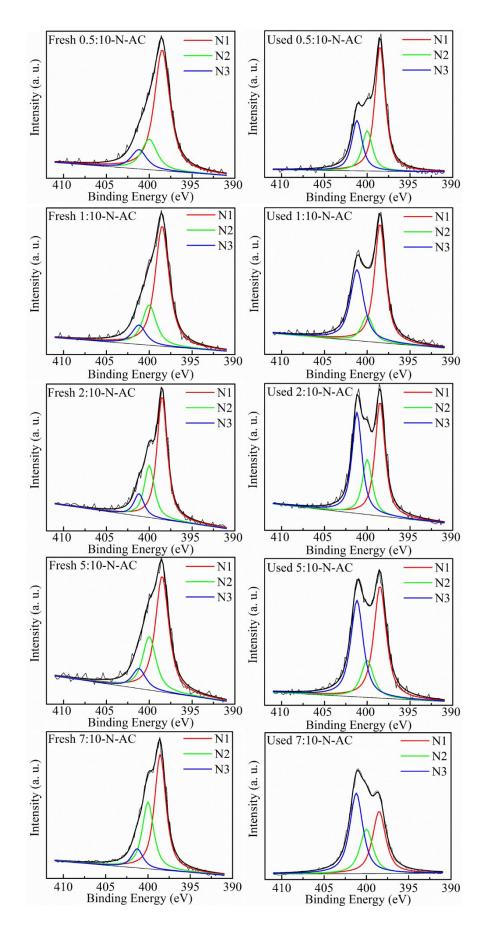
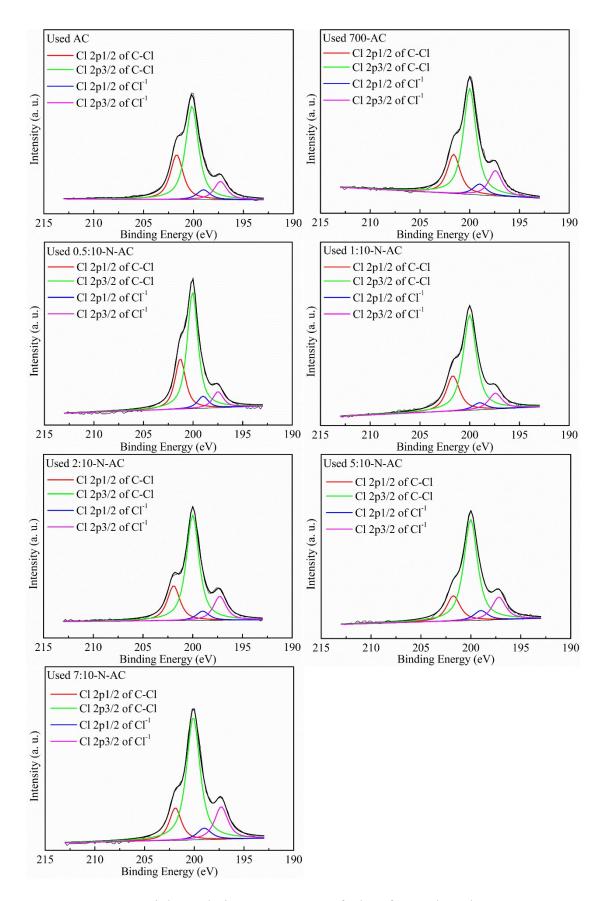



Fig. S6. High-resolution XPS spectra of N 1s for fresh and used catalyst.

Fig. S7. High-resolution XPS spectra of Cl 2p for used catalysts.

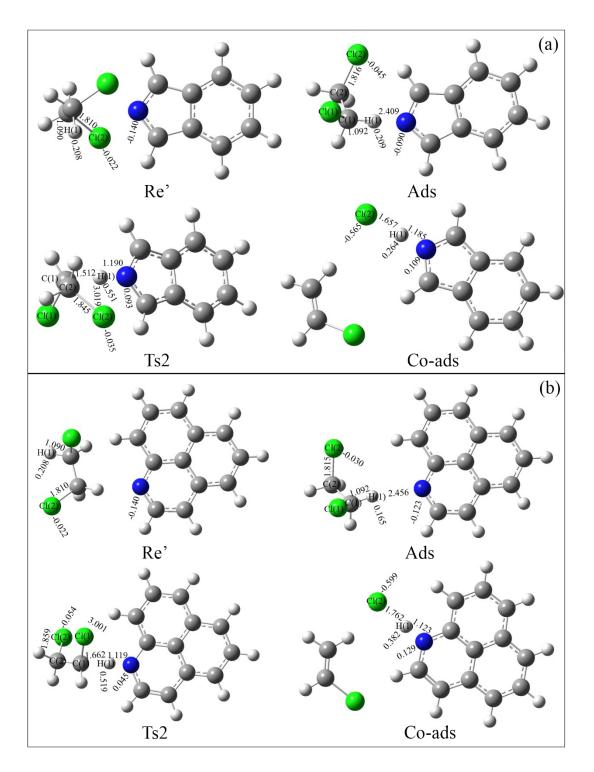
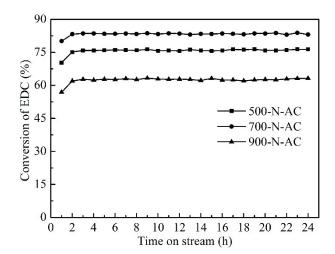


Fig. S8. The geometries of the substances involved in the reaction path. (a): for

- pyrrolic nitrogen structure; (b): for pyridinic nitrogen structure. The path contains:
- 4 adsorbed reactants (Ads), transition state (Ts), intermediate product (Im). Chlorine,
- 5 nitrogen, carbon, and hydrogen atoms are depicted in green, blue, gray and white,
- 6 respectively.

1 Intrinsic Reaction Roordinate (IRC) calculations


- 2 The intrinsic reaction coordinate (IRC) calculations were used to indentify that
- 3 each transition state links the correct product with reactant. In ts-IRC-forward and ts-
- 4 IRC-reverse, the total energy of the cluster were calculated by 100 steps. The
- 5 configurations at the last step were optimized and got all corresponding stable
- 6 substances. It indicates that the reaction is continuous and complete.

7

Additional Experiments

- 9 We have prepared other N-AC catalysts, including 500-N-AC, 700-N-AC and
- 10 900-N-AC, at different calcination temperature, which was named according to the
- 11 calcination temperature, e.g., 500-N-AC indicates the N-AC calcined at 500 °C. Table
- 12 R4 lists the pore structure parameters of these catalysts. It is indicated that the surface
- 13 area and the total pore volume increase as the calcination temperature increases.
- The total N contents and relative contents of different nitrogen species were list
- 15 in Table R2 and Table R3, and the N 1s XPS spectra were shown in Fig R2. As shown
- 16 in Table R2, the total N contents decreases as the calcination temperature increases.
- 17 As listed in Table R3, the contents of the pyridinic nitrogen (N1) and the pyrrolic
- 18 nitrogen (N2) are decreased but the content of quaternary nitrogen (N3) is increased at
- 19 high calcination temperature. Considering the variation of the total N content in these
- 20 N-AC, the individual nitrogen species of N1 and N2 is respectively 3.68%
- 21 (3.68%=5.8%*63.57%) and 1.73% (1.73%=5.8%*29.95%) for 500-N-AC, 2.63%
- 22 (2.63%=4.3%*61.21%) and 1.21% (1.21%=4.3%*28.21%) for 700-N-AC, 1.02%
- 23 (1.02%=1.9%*53.92%) and 0.52% (0.52%=1.9%*27.28%) for 900-N-AC.
- 24 Fig R3 shows the catalytic performance of these catalysts. As shown in Fig R3,
- 25 700-N-AC exhibits the best catalytic activity. The total N content of 700-N-AC is

- 1 higher than 900-N-AC, so the catalytic activity of 700-N-AC is higher than 900-N-
- 2 AC. The total N content of 500-N-AC is higher than 700-N-AC, but the S_{BET} of 500-
- 3 N-AC is much lower than 700-N-AC, so the catalytic activity of 700-N-AC is higher
- 4 than 500-N-AC.

67

Fig. S9. Conversion of 1,2-DCE over different catalysts.

Reaction conditions: temperature = 250 °C, 0.1 MPa, LHSV (1,2-DCE) = 0.2 h^{-1} .

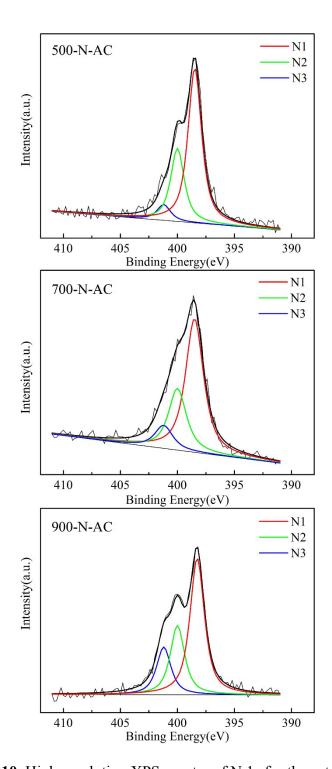


Fig. S10. High-resolution XPS spectra of N 1s for the catalysts.

1 Table S3

2 Surface element content of the catalysts determined by XPS.

Samples	Surface atomic composition of fresh catalysts (atom. %)			
	C 1s	O 1s	N 1s	Cl 2p
500-N-AC	88.8	5.3	5.8	0.1
700-N-AC	91.2	4.4	4.3	0.1
900-N-AC	94.9	3.1	1.9	0.1

3 Table S4

4 The relative contents and binding energies of nitrogen species in the catalysts.

Samples	Relative contents (Area%)			
Samples	N1 (398.5 eV)	N2 (400.0 eV)	N3 (401.2 eV)	
500-N-AC	63.57	29.95	6.48	
700-N-AC	61.21	28.21	10.58	
900-N-AC	53.92	27.28	18.80	

⁵ Note: N1: pyridinic nitrogen, N2: pyrrolic nitrogen, N3: quaternary nitrogen.

6 Table S5

 $7\,\,$ Pore structure parameters of the catalysts test by N_2 adsorption-desorption.

Samples	$S_{BET}(m^2 g^{-1})$	V (cm ³ g ⁻¹)
500-N-AC	741	0.39
700-N-AC	929	0.53
900-N-AC	1097	0.61

⁸ $\overline{S_{BET}}$: surface area; V: total pore volume.