Direct methylation of N-Methylaniline with CO_2/H_2 catalyzed by gold nanoparticles supported on alumina

Gao Tang,^a Hong-Liang Bao,^b Chan Jin,^b Xin-Hua Zhong*a and Xian-Long Du*b

^a Key Laboratory for Advanced Materials, Institute of Applied Chemistry, East China University of Science and Technology, Shanghai 200237 (P. R. China)

^b Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Jialuo Road 2019, Shanghai 201800 (P. R. China)

1. In situ XRD patterns of the Al₂O₃ obtained by different calcination temperatures

Fig. S1 In situ XRD patterns of the Al₂O₃ obtained by different calcination temperatures.

2. TEM micrographs and corresponding Au particle size distributions for Au catalysts loaded on various supports

Fig. S2 TEM micrographs and corresponding Au particle size distributions for Au catalysts loaded on various supports: (a) Au/SiO₂, (b) Au/Mn₂O₃, (c) Au/Co₃O₄, (d) Au/MgO, (e) Au/Al₂O₃, (f) Au/CeO₂, (g) Au/TiO₂, (h) Au/ZnO, and (i) Au/C.

3. Effects of pressure on catalytic performances of Au/Al_2O_3 catalyst for direct methylation of N-methylaniline with CO_2/H_2

Fig. S3 Effects of pressure on catalytic performances of Au/Al₂O₃ catalyst for direct methylation of N-methylaniline with CO₂/H₂. Reaction condition: 0.5 mol% Au, 1.0 mmol N-methylaniline, cyclohexane 10 mL, CO₂ (1 MPa), H₂ (3 MPa), T = 140 °C, t = 5 h.

4. Effects of temperature on the catalytic performances of Au/Al₂O₃ catalyst for direct methylation of Nmethylaniline with CO₂/H₂

Fig. S4 Effects of temperature on the catalytic performances of Au/Al₂O₃ catalyst for direct methylation of N-methylaniline with CO_2/H_2 . Reaction condition: 0.5 mol% Au, 1.0 mmol N-methylaniline, cyclohexane 10mL, CO_2 (1 MPa), H_2 (3 MPa), T = 140 °C, t = 5 h.

5. Time courses for the conversions of N-methylaniline with CO₂/H₂ during the initial stage using Au/Al₂O₃ catalysts with different Au NPssizes from 1.8 to 8.3 nm and Al₂O₃

Fig. S5 Time courses for the conversions of N-methylaniline with CO_2/H_2 during the initial stage using Au/Al₂O₃ catalysts with different Au NPs sizes from 1.8 to 8.3 nm and Al₂O₃. Reaction conditions: catalyst 0.14 g (Au 2.7-5 µmol), 1.0 mmol N-methylaniline, cyclohexane 10 mL, CO₂ (1 MPa), H₂ (3 MPa), T = 140 °C.

Catalyst	Au loading (wt %)	Mean size (nm)	Initial reaction rate ^b (mmol h ⁻¹ g ⁻¹ (cat.))
Al ₂ O ₃	0	-	0
Au/Al ₂ O ₃	0.40	1.8	5.86
Au/Al ₂ O ₃	0.73	2.0	5.14
Au/Al_2O_3	0.70	3.6	4.00
Au/Al_2O_3	0.70	5.7	1.86
Au/Al_2O_3	0.46	7.2	0.61
Au/Al ₂ O ₃	0.47	8.3	0.36

Table S1 Initial reaction rates of the Au/Al₂O₃ catalysts with various mean Au NPs sizes and Al₂O₃ for direct methylation of N-methylaniline with CO_2/H_2^a

^{*a*} Reaction conditions: catalyst 0.14 g (Au 3-5 μ mol), 1.0 mmol N-methylaniline, cyclohexane 10mL, CO₂ (1 MPa), H₂ (3 MPa), T = 140 °C. ^{*b*} Measured from Figure S5.

6. TEM micrographs and corresponding Au particle size distributions for the Au/Al₂O₃ catalysts reduced at different temperatures

Fig. S6 TEM micrographs and corresponding Au particle size distributions for the Au/Al_2O_3 catalysts reduced at different temperatures: (a) 150, (b) 250 and (c) 450 °C.

7. Influence of mean Au NPs size on conversion and selectivity of direct methylation of N-methylaniline with CO₂/H₂.

Fig. S7 Influence of mean Au particle size on conversion and selectivity of direct methylation of Nmethylaniline with CO_2/H_2 . Reaction condition: 1.0 mmol N-methylaniline, 3-5 µmol Au, cyclohexane 10 mL, CO_2 (1 MPa), H_2 (3 MPa), T = 140 °C, t = 5 h. Note: N-methylformanilide (1c), N, N-dimethylaniline (1b).