Pure phase orthorhombic MgTi₂O₅ photocatalyst for H₂ production

Ning Zhang, Kaifu Zhang, Wei Zhou, Baojiang Jiang, Kai Pan, Yang Qu*and Guofeng Wang*

1. Quantum efficiency calculations

The determination of the apparent quantum efficiency for hydrogen generation was performed using the same closed circulating system under illumination of a 300 W Xe lamp with bandpass filter (313 nm) system. The light intensity was measured using a Si photodiode (oreal 91105V). The total light intensities were 36.69 mW·s⁻¹ for 313 nm, 6.63 mW·s⁻¹ for 365 nm. The irradiation area was around 7 cm². Apparent quantum efficiency (AQE) at different wavelengths was calculated by the following equation.

$$AQE = \frac{2 \times the number of evolved H_2 molecules}{the number of incident photons} \times 100\%$$

2. Solar to hydrogen (STH) conversion efficiency calculations from solar simulator measurements.

The solar energy conversion was evaluated by using AM 1.5 solar simulator as the light source with $MgTi_2O_5$ nanocrsytals as the catalyst (20 mg catalyst in 80 mL water and 20 ml methanol). After 1h of illumination, the total indident power over the 7 cm² irradiation area was 1.21 W, so that the total input energy in 1 hours was

 $E_{Solar} = 4.36 \times 10^3 \text{ J}.$

During the photocatalytic reaction, 94.72 μ mol H₂ was detected by gas chromatography, which indicated that the energy generated by water splitting is E_F = 22.57 J.

 $E_F = 94.72 \times 10^{-6} \times 6.02 \times 10^{23} \times 2.46 \times 1.609 \times 10^{-19}$; 2.46 eV is the free energy of water splitting.

The "solar-to-hydrogen" conversion efficiency of $MgTi_2O_5$ nanocrystals was determined to be:

 $STH = E_F/E_{Solar} = 0.517\%$

Name	C _{Mg} (mol/L)	Molar Ratios		T(°C)	Draduction
		Mg	Ti	r(C)	Production
PMT	0.0104	1	1	17	MgTi ₂ O ₅
MMT-1	0.0104	1	2	17	Mixed phase
MMT-2	0.0104	2	1	17	Mixed phase
MMT-3	0.0278	1	1	17	Mixed phase
MMT-4	0.0278	1	2	25	Mixed phase

Table S1. Control experiments to prepare pure phase MgTi₂O₅

 C_{Mg} is the concentration of Mg^{2+} ions in solution. Mixed phase contains $MgTiO_3$ and $MgTi_2O_5$.

Figure S1. XRD patterns of mixed phase magnesium titanates (the red star is phase of MgTi₂O₅

and the blue triangle is phase of MgTiO₃).

Figure S2. Raman spectra of $MgTi_2O_5$ nanocrystals and commercial $MgTi_2O_5$.

Figure S3. UV-vis absorption spectrum (a) of PMT and CMT, and XRD pattern of CMT (b).

Figure S4. N₂ adsorption-desorption isotherm curves and pore size distribution (inset) of pure $MgTi_2O_5$ nanocrystals, mixed phase $MgTiO_3/MgTi_2O_5$ and commercial $MgTi_2O_5$.

Figure S5. XRD patterns of PMT before and after five times recycles of H₂ production.