Electronic Supplementary Information

Catalytic CO₂ Hydrogenation to Formic Acid over Carbon Nanotube–Graphene Supported PdNi Alloy Catalysts

Lan Thi Mai Nguyen,^{a†} Hunmin Park,^{a†} Marimuthu Banu,^b Jae Yul Kim,^b D uck Hyun Youn,^b Ganesan Magesh,^b Won Yong Kim,^a and Jae Sung Lee^{*b}

^aDepartment of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 790-784, (Korea)

^bSchool of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 689-798 (Korea), E-mail: jlee1234@unist.ac.kr

^cBasic Materials & Chemicals R&D, LG Chem, Ltd., Daejeon, 305-738 (Korea)

Corresponding author

jlee1234@unist.ac.kr Tel: +82-52-217-2544, Fax +82-52-217-1019

S1. Synthesis of graphene oxide

Graphene oxide was synthesized by Hummers method using graphite flake. Briefly, 2g of graphite flake was added into a mixture solution of H_2SO_4 (50 mL) and NaNO₃ (1 g) in a 3 neck round bottom flask (500 mL). The mixture was vigorous stirred with magnetic bar in 10 min, then put in an ice-bath (0 – 5°C) and further stirring 20 min to obtain green solution. KMnO₄ (6 g) was slowly added to flask under continuous stirring in ice-bath (0 – 5°C). After 20 min, ice-bath was removed and temperature increased to 35°C. The solution was further stirred at 35°C for 2 h and then 100 mL DI H₂O was added dropwise to the mixture. The solution temperature increased up to 98°C and kept for 30 min until no bubble appeared and dark brown solution turned to light brown solution. After that, the reaction was terminated by addition of 300 mL DI H₂O (40°C) and mixture of 4 mL H₂O₂ 35% solution in 40 mL DI H₂O. The product was filtered using mixed-cellulose ester membrane filter (pore size: 0.45µm) and washed 2 times with DI H₂O. The resulting mixture was then re-dispersed in 350 mL DI H₂O (40°C) to remove residual metal ions and acid and kept stirring for 1 h at 40°C. After the second filtering, graphite oxide was washed with liquid N₂ and transferred to Freeze drying in 4 days. Finally, we obtained around 3.3 g of graphite oxide after grinding (Fig. S1).

Fig. S1 (a) Photograph of GO and (b) XRD pattern of GO

1. Catalyst characterization

1.1. Energy dispersive spectrum (EDS) - High angle annular dark field (HAADF) TEM image

Fig. S2 (a) EDS spectrum and (b) HAADF TEM image of Pd_3Ni_7/CNT -GR.

1.2. Fourier transform infrared (FTIR) and Raman spectroscopy

Fig. S3 (a) FTIR spectra and (b) Raman spectra of Pd_3Ni_7/CNT -GR and GO samples

Fig. S4 Ni 2p XPS spectra comparison of Pd₃Ni₇/CNT-GR and Ni/CNT-GR.

1.4. Pd concentration on the surface of catalysts

Fig. S5 Linear relation of intended composition of Pd and surface Pd determined by XPS.

1.5. Catalytic activity of Pd, Ni, Pd₃Ni7 on CNT-GR

Fig. S6. Formic acid yield as a function of catalyst composition. Reaction conditions: 1 mmol (Pd+Ni) catalysts, 90ml, H_2O , P = 50 bar (H_2/CO_2 = 1), 40 °C, 15 h. No formic acid product was obtained from Ni/CNT-GR catalyst.

1.6. Recycling test of Pd₃Ni₇/CNT-GR catalyst

Fig. S7 Formic acid yield as a function of batch cycles. Reaction conditions: 1 mmol (Pd+Ni) catalysts, 90ml, H_2O , P = 50 bar (H2/CO2 = 1), 40 °C, 5 h. Catalyst was regenerated with H_2 treatment (130 °C, 1 h) before each run of catalytic reactions.

2. Catalytic studies

Calculation of turnover number (TON)

 $TON = \frac{Mole \ of \ Formic \ acid \ (mmol)}{Mole \ of \ Pd \ active \ sites \ (mmol)}$

Calculation of turnover frequency (TOF = TON s⁻¹)

 $TOF(s^{-1}) = \frac{Mole \ of \ Formic \ acid \ (mmol)}{Mole \ of \ Pd \ active \ sites \ (mmol) \times Reaction \ time \ (s)}$

HPLC analysis of liquid product

Fig. S8 HPLC analysis of Formic acid (desirable product) and Acetic acid (minor product) after CO₂ hydrogenation reaction.

Table S1. Textural properties of materials.

	Pd ₃ Ni ₇ /CNT-GR	CNT-GR	CNT	GR
BET surface area (m²/g)	266	288	224	33.0
External Surface Area ^a (m ² /g)	213	231	160	30.7
Micropore Area ^a (m²/g)	52.6	56.9	62.4	2.33
Mesopore Volume⁵ (m³/g)	0.777	0.677	0.636	0.0935
Micropore Volume ^a (cm³/g)	0.0187	0.0202	0.0249	N.A.°

a. Calculated by t-method

b. BJH adsorption pore volume

c. Not available because of too low adsorption amount.

Catalyst	Solvent	т	P (H ₂ /CO ₂)	Time	FA (M)	TON /	References
		(°C)	(bar)	(h)		TOF (s ⁻¹)	
							Chem.
Ru aqua	20 ml water	40	55 / <u>25</u>	70	0.035 –	35 – 55 /	Commun. ,
complex	(pH = 2.5 - 5.5)	40	55725	70	0.055	1.4 × 10 ⁻⁴	2004 , 2714–
							2715
							Dalton Trans.,
Ir aqua	20 ml water	40	55 / 25	0.5	0.012	12 /	2006 , 4657-
complex	(pH = 3)					6.7 × 10 ⁻³	4663
							Catal.
Rh aqua	5 ml water	50	50 / 50	00	0.40	0.3 /	Commun.
complex	(HCOONa 0.5 M)	50	50 / 50	20	0.13	4.5 × 10 ⁻⁶	2011 , 14, 74-
							76
	O red weete e		50 / 50	400	0.44	0.08 /	Net
Ru complex	2 mi water	50	50750	120	0.11	1.8 × 10 ⁻⁷	Nat.
						0.95 /	
	2 ml (DMSO+H ₂ O)		50 / 50	120	1.31	2.2 × 10 ⁻⁶	5:4017, 2014
Pd ₃ Ni ₇ /		40	25 / 25	15	0.036	5.4 /	This work
CNT-GR	45 ml water					10-4	

Table S2. Comparison of catalytic performance of pure formic acid formation from CO_2 .