Electronic Supplementary Information

Bifunctional Catalyst of Metallophthalocyanine-Carbon Nitride Hybrid for Chemical Fixation of CO₂ to Cyclic Carbonate

Ting Zhang,^{a,b} Xuefeng Wang,^a Xueli Huang,^a Yinnian Liao^a and Jinzhu Chen*^b

^a Key Laboratory of Xinjiang Coal Clean Conversion and Chemical Process, College of Chemistry and Chemical Engineering, Xinjiang University. Urumqi, Xinjiang 830046 (PR China).
^b CAS Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences. Guangzhou 510640 (PR China).
* Corresponding author, Tel./Fax: (+86)-20-3722-3380, E-mail address: chenjz@ms.giec.ac.cn (J.

* Corresponding author, Iel./Fax: (+80)-20-3722-3380, E-mail address: <u>chenjz@ms.giel</u> Chen)

Materials

Unless otherwise stated, all chemicals in this research were commercial available and used without further purification. Propylene oxide (PO), zinc acetate [Zn(OAc)₂ 2H₂O], cobalt acetate $[Co(OAc)_2 2H_2O],$ propanoic acid (98 wt%). ethanol, methanol, dichloromethane, tetrahydrofuran (THF), N,N-dimethylformamide (DMF) were obtained from Sinopharm Chemical Reagent Co. Ltd. (Shanghai, P.R. China). Terephthaldehyde, pyrrole, potassium iodide (KI), tetraphenylphosphonium bromide (TPPB), tetrabutylammonium bromide (TBAB), 4-dimethylaminopyridine (DMAP) were purchased from Aladdin Industrial Inc. (Shanghai, P.R. China). Pyrrole was freshly distilled before use. Carbon dioxide ($CO_2 > 99.999\%$) was obtained from Huate Co. Ltd. (Foshan, P.R. China).

Characterization techniques

Fourier transform infrared (FT-IR) spectra of samples with KBr wafers were recorded at room temperature in the 500–4500 cm⁻¹ region with a Bruker Tensor 27 spectrotometer, equipped with a Data Station, at a spectral resolution of 1 cm^{-1} and accumulations of 128 scans.

Powder X-ray diffraction (XRD) patterns of MPc/g-C₃N₄ (M = Co, Cu) and g-C₃N₄ were obtained with a PANalytical X'pert Pro MPD diffractometer operated at 40 KV and 40 mA, using Ni-filtered Cu-K α radiation.

X-ray photoelectron spectroscopy (XPS) spectra of MPc/g-C₃N₄ (M = Co, Cu) were performed with a Kratos Axis Ultra (DLD) photoelectron spectrometer operated at 15 kV and 10 mA at a pressure of about 5×10^{-9} torr using AlK α as the exciting source (hv = 1486.6 eV). C 1s photoelectron peak (BE = 284.2 eV) was used for the binding energy calibration.

Metal contents in MPc/g-C₃N₄ (M = Co, Cu) samples were determined quantitatively by inductively coupled plasma-atomic emission spectroscopy (ICP-AES) analysis on an IRIS Advantage 1000 instrument.

¹H and ¹³C{¹H} NMR spectra of 3-chloro-1,2-propylenecarbonate were recorded on Bruker AV III 400 at 25 $^{\circ}$ C.

Figure S1. (a) FT-IR spectra of i) g-C₃N₄-480, ii) CuPc/g-C₃N₄-480 (0.15), iii) CuPc/g-C₃N₄-480 (0.39), iv) CuPc/g-C₃N₄-480 (0.78), v) CuPc; (b) FT-IR spectra of i) CuPc/g-C₃N₄-450 (0.72), ii) CuPc/g-C₃N₄-480 (0.80), iii) CuPc/g-C₃N₄-520 (0.74), and iv) CuPc/g-C₃N₄-550 (0.78).

Figure S2. (a) XRD patterns of the i) $g-C_3N_4-480$, ii) CuPc/ $g-C_3N_4-480$ (0.15), iii) CuPc/ $g-C_3N_4-480$ (0.39), iv) CuPc/ $g-C_3N_4-480$ (0.78), v) CuPc. (b) XRD patterns of i) CuPc/ $g-C_3N_4-450$ (0.72), ii) CuPc/ $g-C_3N_4-480$ (0.80), iii) CuPc/ $g-C_3N_4-520$ (0.74), and iv) CuPc/ $g-C_3N_4-550$ (0.78).

Figure S3. TGA of (a) $CoPc/g-C_3N_4-480$ (0.66) and (b) $CuPc/g-C_3N_4-480$ (0.75).

Figure S5. ¹³C {¹H} NMR of 3-chloro-1,2-propylenecarbonate in CDCl₃.

CPC: ¹H NMR (400 MHz, 25 °C, CDCl₃) δ 4.98 (dddd, J = 8.4, 5.7, 4.8, 3.7 Hz, 1H), 4.64–4.47 (m, 1H), 4.36 (dd, J = 8.9, 5.7 Hz, 1H), 3.74 (ddd, J = 16.0, 12.3, 4.2 Hz, 2H). ¹³C{¹H} NMR (101 MHz, 25 °C, CDCl₃) δ 154.5, 74.5, 67.0, 44.1.