Supporting information for

Synthesis, characterization and catalytic activity of novel large network polystyrene-immobilized organic bases

Marco Tassi,¹ Elena Bartollini,² Peter Adriaensens,^{*1} Luca Bianchi,² Balaka Barkakati,³ Robert Carleer,¹ Jihua Chen,³ Dale K. Hensley,³ Assunta Marrocchi,^{*2} and Luigi Vaccaro^{*2}

¹Hasselt University - Applied and Analytical Chemistry, Agoralaan-Building D, Belgium BE-3590 Diepenbeek;

²Laboratory of Green Synthetic Organic Chemistry, CEMIN – Dipartimento di Chimica, Biologia e Biotecnologie, Università di Perugia Via Elce di Sotto, 8, 06123 Perugia, Italy, ³Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA.

e-mail: luigi.vaccaro@unipg.it; assunta.marrocchi@unipg.it

Chem. Name	1,3-Diphenoxypropan-2-ol (17)							
Lit. Ref.		Chem. Lett. 2005 ,34,1142-1143 Adv.Synth.Catal. 2010 ,352,2489-2496						
	5	∞~~	+ HO 6	2b (5 mol%) SolFC, 60 °C,	⁶⁾ 20 h	ОН 00 17		
METHOD: In a screw capp phenol (6) (0.0 consecutively a ml) was added EtOAc. Organic diphenoxypropa	ETHOD: a screw capped small vial equipped with a magnetic stirrer 2b (0.021 g, 0,05 mmol, 2,43 mmol/g), henol (6) (0.094 g, 1.0 mmol) and 2-(phenoxymethyl)oxirane (5) (0.150 g, 1.0 mmol) were onsecutively added and the resulting mixture was left under stirring at 60°C. After 20 hours EtOAc (1 II) was added and the reaction mixture filtered. The catalyst was washed using additional 2x2 ml of tOAc. Organic layers were collected and solvent was removed under vacuum to give 1,3- iphenoxypropan-2-ol (17) as a white solid (0.240 g, 97% yield)							
Mol Formul	а		$C_{15}H_1$	₆ O ₃	m.p.	76-78°C		
Elemental Ana	lysis:	Calcd. C	, 55.75; H	, 4.68. Found C,	55.66; H, 4.7	72.		
1	δ	value	No. H	Mult.		j value/Hz		
400 MHz		2.29	1	br s				
	4.10) – 4.25	4	т				
	4.40		1	quintet		5.5		
	6.8	5 – 7.05	6	т				
	7.20) – 7.35	4	т				
¹³ C NMR (100.6 MHz, CDCl ₃) δ : 68.6, 68.8, 114.6, 121.3, 129.6, 158.4								
TLC-R _f (Eluant) : 0.28 (Hex:EtOAc = 3:1)								

In a screw capped vial equipped with a magnetic stirrer 2b (0,021 g, 0.05 mmol, 2,43 mmol/g), 4iodophenol (7) (0.220 g, 1.0 mmol) and 2-(phenoxymethyl)oxirane (5) (0.150 g, 1.0 mmol) were consecutively added and the resulting mixture was left under stirring at 60°C. After 34 hours EtOAc (1 ml) was added and the reaction mixture filtered. The catalyst was washed using additional 2x2 ml of EtOAc. Organic layers were collected and solvent was removed under vacuum and the crude product was purified by washing with EtP to give 1-(4-iodophenoxy)-3-phenoxypropan-2-ol (18) as white solid (0.363 g, 98% yield).

Mol Formula			C₁₅H	15O3I	m.p.	66 – 67 °C	
	δ	value	No. H	Mult.		j value/Hz	
400 MHz		2.60	1	br, s			1
	4.06	6 – 4.17	4	т			l .
	4.34	4 – 4.39	1	т			L
	6.84	4 – 6.87	2	т			L
	6.9 [,]	1 – 6.99	5	т			L
	7.23	3 – 7.30	2	т			l .

¹³C NMR (100.6 MHz, CDCl₃) δ : 68.6, 68.8, 69.4, 114.5, 115.5, 115.6, 115.8, 116.0, 121.3, 129.6, 154.5, 156.3, 158.3, 158.7

In a screw capped vial equipped with a magnetic stirrer **2b** (0,021 g, 0,05 mmol, 2,43 mmol/g), 4-fluorophenol (**8**) (0.112 g, 1.0 mmol) and 2-(phenoxymethyl)oxirane (**5**) (0.150 g, 1.0 mmol) were consecutively added and the resulting mixture was left under stirring at 60°C. After 30 hours EtOAc (1 ml) was added and the reaction mixture filtered. The catalyst was washed using additional 2x2 ml of EtOAc. Organic layers were collected and solvent was removed under vacuum and the crude product was purified by washing with EtP to give 1-(4-fluorophenoxy)-3-phenoxypropan-2-ol (**19**) as a pale yellow solid (0.257 g, 98% yield).

Mol Formula		C ₁₅ H ₁₅ O ₃ F			₅ O ₃ F	m.p.	69 – 70 °C	
	δ value		No. H	I	Mult.		j value/Hz	
400 MHz	2.75		1		br, s			
CDCI₃	4.06	6 – 4.16	4		т			
	4.33	3 – 4.41	1		т			
	6.84	4 – 6.87	2		m			
	6.9′	l <i>–</i> 6.98	5		т			
	7.23	3 – 7.30	2		т			

¹³C NMR (100.6 MHz, CDCl₃) δ : 68.6, 68.8, 69.4, 114.5, 115.5, 115.6, 115.8, 116.0, 121.3, 129.6, 154.5, 156.3, 158.3, 158.7

Chem. Name	1-(4'-Isopropylphenoxy)-3-phenoxypropan-2-ol (20)						
Lit. Ref.	Adv.Synth.Catal. 2010,352,2489-2496						
$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array}{} \\ \begin{array}{c} \end{array}{} \\ \end{array}{} \\ \end{array}{} \\ \begin{array}{c} \end{array}{} \\ \end{array}{} \\ \end{array}{} \\ \end{array}{} \\ \begin{array}{c} \end{array}{} \\ \end{array}{} \\ \end{array}{} \\ \end{array}{} \\ \begin{array}{c} \end{array}{} \\ \end{array}{} \\ \end{array}{} \\ \end{array}{} \\ \begin{array}{c} \end{array}{} \\ \end{array}{} \\ \end{array}{} \\ \begin{array}{c} \end{array}{} \\ \end{array}{} \\ \end{array}{} \\ \end{array}{} \\ \begin{array}{c} \end{array}{} \\ \begin{array}{c} \end{array}{} \\ $ } \\ \end{array}{} \\ \end{array}{} \\ } \\ \end{array}{} \\ \end{array}{} \\ \end{array}{} \\ \end{array}{} \\ {} \\ \end{array}{} \\ } \\ } \\ } \\ } \\ } \\ } \\ } \\ } \\ } \\ } \\ } \\ } \\ } \\ } \\ } \\ } \\ } \\ } \\ } \\ } \\ } \\ } \\ } \\ } \\ } \\ } \\ } \\ } \\ } \\ } \\ } \\ } \\ } \\ } \\ } \\ } \\ } \\ } \\ } \\ } \\ } \\ } \\ } \\ } \\ } \\ } \\							
METHOD: In a screw capp isopropylphenol consecutively ac ml) was added EtOAc. Organic Isopropylphenoz	METHOD: In a screw capped vial equipped with a magnetic stirrer 2b (0,021 g, 0,05 mmol, 2,43 mmol/g), 4- isopropylphenol (9) (0.136 g, 1.0 mmol) and 2-(phenoxymethyl)oxirane (5) (0.150 g, 1.0 mmol) were consecutively added and the resulting mixture was left under stirring at 60°C. After 18 hours EtOAc (1 ml) was added and the reaction mixture filtered. The catalyst was washed using additional 2x2 ml of EtOAc. Organic layers were collected and solvent was removed under vacuum to give 1-(4'- Isopropylphenoxy)-3-phenoxypropan-2-ol (20) as a pale yellow oil (0.277 g, 97% yield).						
Mol Formula C ₁₈ H ₂₂ O ₃ m.p.				Oil			
Elemental Ana	lysis: Calcd. C	, 75.50; H	, 7.74. Found C,	75.13; H, 7.7	78		
	δ value	No. H	Mult.	j value/Hz			
400 MHz	1.22	6	d		6.8		
	2.70	1	d		4.9		
	2.86	1	septet		6.9		
	4.05 - 4.20	4	т				
	4.37	1	sextet		5.2		
	6.86	2	d		8.6		
	6.90 - 7.00	3	т				
	7.14	2	d		8.6		
	7.25 – 7.36	2	m				
¹³ C NMR (100.6 141.7, 156.5, 15	6 MHz, CDCI₃) 58.4	δ : 24.2, 3	3.3, 68.6, 68.7, 6	8.8, 114.4, <i>1</i>	114.5, 121.2, 127.3, 1	29.5,	

TLC-R_f (Eluant) : 0.36 (Hex:EtOAc = 3:1)

In a screw capped vial equipped with a magnetic stirrer **2b** (0.021 g, 0.05 mmol, 2.43 mmol/g), 4-hydroxybenzaldehyde (**10**) (0.122 g, 1.0 mmol) and 2-(phenoxymethyl)oxirane (**5**) (0,150 g, 1.0 mmol) were consecutively added and the resulting mixture was left under stirring at 60°C. After 80 hours EtOAc (1 ml) was added and the reaction mixture filtered. The catalyst was washed using additional 2x2 ml of EtOAc. Organic layers were collected and solvent was removed under vacuum and the crude product was purified by silica gel flash chromatography (eluant: Petroleum ether/EtOAc, 3/1) to give 4-(2-hydroxy-3-phenoxypropoxy)benzaldehyde (**21**) as a white solid (0.264 g, 97% yield).

Mol Formula			C ₁₆ H ₁₆ O ₄		m.p.	90 – 91 °C	
	δ value		No. H	Mult.		j value/Hz	
400 MHz		2.64	1	br, s	D ₂ O	exchangeable	
	4.04	4 – 4.20	2	т			
	4.23	3 – 4.24	2	т			
	4.39	9 – 4.47	1	т			
	6.93	3 – 6.95	2	т			
	6.98	8 – 7.00	1	т			
	7.03	3 – 7.05	2	т			
	7.28	8 – 7.32	2	т			
	7.82	2 – 7.84	2	m			
		9.88	1	S			

¹³C NMR (100.6 MHz, CDCl₃) δ : 68.4, 68.6, 69.0, 114.5, 114.8, 121.4, 129.6, 130.3, 132.0, 158.2, 163.4, 190.8

TLC-R_f (Eluant) : 0.51 (EtP:EtOAc = 3:1)

Chem. Name	2-(2'-Hydroxy-3'-phenoxypropoxy)-benzaldehyde (22)						
Lit. Ref.	Adv.Synth.Catal. 2010,352,2489-2496						
ĺ	5000	+ U	0 2b (5 mol SolFC, 60 °C	%) 5, 55 h►			
METHOD: In a screw capp hydroxybenzald were consecutiv EtOAc (1 ml) wa 2x2 ml of EtOAc product was put Hydroxy-3'-pher	capped vial equipped with a magnetic stirrer 2b (0.021 g, 0.05 mmol, 2.43 mmol/g), 2- nzaldeyde (11) (0.122 g, 1.0 mmol) and 2-(phenoxymethyl)oxirane (5) (0.150 g, 1.0 mmol) ecutively added and the resulting mixture was left under stirring at 60°C. After 28 hours nl) was added and the reaction mixture filtered. The catalyst was washed using additional EtOAc. Organic layers were collected, solvent was removed under vacuum and the crude as purified by silica gel chromatography (eluant: Petroleum ether/EtOAc, 4/1) to give 2-(2'-						
Mol Formul	a	C ₁₆ H ₁	₆ O ₄	m.p.	Oil		
Elemental Anal	ysis: Calcd. C	C, 70.57; H	, 5.92. Found C,	70.89; H, 5.9	95		
1	δ value	No. H	Mult.		j value/Hz		
'H NMR 400 MHz	3.00 - 3.40	1	bs				
CDCI ₃	4.18	2	d		5.3		
	4.23 - 4.35	2	т				
	4.40 - 4.50	1	m				
	6.80 - 7.10	5	m			-	
	7.25 – 7.35	2	m			_	
	7.50 - 7.60	1	m			-	
	7.81	1	dd		1.4 and 7.6		
10	1	1	1	1			

 ^{13}C NMR (100.6 MHz, CDCl₃) δ : 68.4, 68.6, 69.6, 112.9, 114.5, 121.3, 121.4, 125.0, 129.6, 129.7, 136.0, 158.3, 160.5, 189.7

In a screw capped vial equipped with a magnetic stirrer **2b** (0,034 g, 0,08 mmol, 2,43 mmol/g), 4trifluoromethyl-phenol (**13**) (0.162 g, 1.0 mmol) and 2-(phenoxymethyl)oxirane (**5**) (0.150 g, 1.0 mmol) were consecutively added and the resulting mixture was left under stirring at 60°C. After 28 hours EtOAc (1 ml) was added and the reaction mixture filtered. The catalyst was washed using additional 2x2 ml of EtOAc. Organic layers were collected and solvent was removed under vacuum and the crude product was purified by silica gel chromatography (eluant: Petroleum ether/EtOAc, 4/1) to give 1-phenoxy-3-(4-(trifluoromethyl)phenoxy)propan-2-ol (**24**) as white solid (64% yield).

Mol Formula			$C_{16}H_{15}$	O_3F_3	m.p.	60 - 62 °C	
	δ	value	No. H	Mult.	j	value/Hz	
400 MHz	2,7	5 – 2.79	1	br, s			
	4.1 <i>°</i>	1 – 4.22	4	т			
	4.39	9 – 4.42	1	т			
	6.89	9 – 6.99	5	т			
	7.27	7 – 7.31	2	т			
	7.52	2 – 7.55	2	т			

¹³C NMR (100.6 MHz, CDCl₃) δ : 68.6, 68.8, 69.1, 82.8, 84.5, 114.5, 115.4, 121.4, 123.3, 123.6, 125.7, 126.9, 127.0, 129.6, 158.2, 160.8

TLC-R_f (Eluant) : 0.44 (EtP :EtOAc = 4 :1)

Run	Conversion (%)
1	97
2	95
3	93
4	86
5	81
6	56

Table S1. Recycling of catalyst 2b in the reaction of epoxide 5 and phenol 6

Figure S1. Partial FTIR spectra of SP-CI 1b, SP-TBD 2b and SP-TEA 3b

Figure S2. Full FTIR spectra of SP-CI **1***c*, SP-TBD **2***c* and SP-TEA **3***c*. The inset shows the expanded spectral region between 1150 cm⁻¹ and 1750 cm⁻¹.

Figure S4 ¹³C-CP/MAS NMR spectra of SP-TEA 3b and 3c.

Figure S5. SEM Images of SP-CI 1a-c, SP-TBD 2a-c, and SP-TEA 3a-c.

Figure S6. Additional SEM Images of SP-CI **1***a*-*c*, SP-TBD **2***a*-*c*, and SP-TEA **3***a*-*c* (all scale bars are 1 micron)

Figure S8. Additional TEM Images of SP-TBD 2a at various magnifications

Figure S9. TEM Images of SP-CI 1*a-c*, SP-TBD 2*a-c*, and SP-TEA 3*a-c* (all scale bars are 100 nm)