SUPPORTING INFORMATION

DNA Template-Regulated Intergrowth of Fluorescent Silver Nanocluster Emitter Pair

Jin-Liang Ma, Bin-Cheng Yin*, and Bang-Ce Ye*

Lab of Biosystem and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science & Technology, Shanghai, 200237, P. R. China

Corresponding author: Bin-Cheng Yin, binchengyin@ecust.edu.cn; Bang-Ce Ye, bcye@ecust.edu.cn.

List of contents:

Title of Different Section	Table and Figure	Page	
1. The Information of Oligonucleotides Used in This Study	Table S1	3-5	
2. Supplementary Results		6-19	
2.1 Four modes of emitter pair	Figure S1	6	
2.2 S-T _n /AgNC (n=5, 10, 15, 20, 25, 30, 35, 70), S-0/AgNC, and Y-T ₁₅ /AgNCs, and T ₁₅ -N/AgNCs	Figure S2	7	
2.3 S-G _n /AgNCs (n=1, 3, 5, 7, 10, 16 and 18)	Figure S3	8	
2.4 Changes in fluorescence intensity before and after adding inhibitor	Figure S4 and Figure S5	9-10	
2.5 The replacement of nucleobase in spacer of DNA template	Figure S6	11	
2.6 S-PEG(5)-T ₄ /AgNCs and S-PEG(5)/AgNCs	Figure S7	12	
2.7 The emission spectra of DNA/AgNCs at different excitation	Figure S8	13	
2.8 The mixture of two templates containing one emitter and 15-nt polythymine	Figure S9	14	
2.9 Comparison of DNA/AgNCs from our obtained and the reported templates	Table S2	15	
2.10 The investigation on energy transfer	Figure S10	16	
2.11 The effect of AgNO ₃ with different concentration	Figure S11	17	
2.12 The effect of different pH	Figure S12	18	
3. References			

1. The Information of Oligonucleotides Used in This Study

No.	Name	Sequence* (5'-3')		
1	T1	T ₁₅ -CCCTAACTCCCC		
2	T2	CCCTTAATCCCC-A ₁₅		
3	Т3	TATATATATTTCCCCTTAATCCCCAACTATACAACCTACTA		
4	T4	TAGTAGGTTGTATAGTTCCCCTAACTCCCCAAATATATAT		
5	Т5	CCCTTAATCCCCTGAGGTAGTAACTATACAACCTACTACCTCACCCTAACTCC CC		
6	T6	TAGTAGGTTGTATAGTTCCCCTTAATCCCCTCCCTAACTCCCCAACTATACAAC CTACTA		
7	S-T ₇₀	CCCTTAATCCCC-T ₇₀ -CCCTAACTCCCC		
8	S-T ₃₅	CCCTTAATCCCC-T ₃₅ -CCTAACTCCCC		
9	S-T ₃₀	CCCTTAATCCCC-T ₃₀ -CCCTAACTCCCC		
10	S-T ₂₅	CCCTTAATCCCC-T ₂₅ -CCCTAACTCCCC		
11	S-T ₂₀	CCCTTAATCCCC-T ₂₀ -CCCTAACTCCCC		
12	S-T ₁₅ (YN)	CCCTTAATCCCC-T ₁₅ -CCCTAACTCCCC		
13	S-T ₁₀	CCCTTAATCCCC-T ₁₀ -CCCTAACTCCCC		
14	S-T ₅	CCCTTAATCCCC-T5-CCCTAACTCCCC		
15	S-A ₃₅	CCCTTAATCCCC-A ₃₅ -CCCTAACTCCCC		
16	S-A ₃₀	CCCTTAATCCCC-A ₃₀ -CCCTAACTCCCC		
17	S-A ₂₅	CCCTTAATCCCC-A25-CCCTAACTCCCC		
18	S-A ₂₀	CCCTTAATCCCC-A ₂₀ -CCCTAACTCCCC		
19	S-A ₁₅	CCCTTAATCCCC-A ₁₅ -CCCTAACTCCCC		
20	S-A ₁₀	CCCTTAATCCCC-A ₁₀ -CCCTAACTCCCC		
21	S-A ₅	CCCTTAATCCCC-A5-CCCTAACTCCCC		
22	S-C ₃₅	CCCTTAATCCCC-C ₃₅ -CCCTAACTCCCC		
23	S-C ₃₀	CCCTTAATCCCC-C ₃₀ -CCCTAACTCCCC		
24	S-C ₂₅	CCCTTAATCCCC-C ₂₅ -CCCTAACTCCCC		
25	S-C ₂₀	CCCTTAATCCCC-C ₂₀ -CCCTAACTCCCC		

Table S1. Sequence information for oligonucleotides used in this study

26	S-C ₁₅	CCCTTAATCCCC-C ₁₅ -CCCTAACTCCCC
27	S-C ₁₀	CCCTTAATCCCC-C ₁₀ -CCCTAACTCCCC
28	S-C ₅	CCCTTAATCCCC-C ₅ -CCCTAACTCCCC
29	S-0	CCCTTAATCCCCCCTAACTCCCC
30	S-G ₁	CCCTTAATCCCCGCCCTAACTCCCC
31	S-G ₃	CCCTTAATCCCCGGGCCCTAACTCCCC
32	S-G ₇	CCCTTAATCCCC GGTTGGGCCCTAACTCCCC
33	S-G ₈	CCCTTAATCCCC GGGGTGGGCCCTAACTCCCC
34	S-G ₁₃	CCCTTAATCCCC GGGGTGGGGGGGGGCCCTAACTCCCC
35	S-G ₁₆	CCCTTAATCCCCGGTGGGGTGGGGGGGGGGCCCTAACTCCCC
36	S-G ₁₈	CCCTTAATCCCCGGGGTGGGGTGGGGGGGGGGGCCCTAACTCCCC
37	S-AT	CCCTTAATCCCC TTTTATATATATATATATCCCTAACTCCCC
38	C-AT	ΑΤΑΤΑΑΤΑΤΑΤΑΑΑΑ
39	Τ7	CCCTTAATCCCC AACTATACAACCTACTACCTCA
40	Τ8	TAGTAGGTTGTATAGTTCCCTAACTCCCC
41	Ι	TGAGGTAGTAGGTTGTATAGTT
42	S-R ₁₅ -C ₀	CCCTTAATCCCC TTATATAATTTATTA CCCTAACTCCCC
43	S- R ₁₅ -C ₃	CCCTTAATCCCCC TATACAATTTACTACCCTAACTCCCC
44	S- R ₁₅ -C ₄	CCCTTAATCCCCC TATACAATCTACTACCCCTAACTCCCC
45	S-R ₁₅ -C ₅	CCCTTAATCCCC CTATACAACCTACTACCCCAACTCCCC
46	S- R ₂₂ -C ₀	CCCTTAATCCCC AATTATATAATTTATTATTATTATCCCTAACTCCCC
47	S-R ₂₂ -C ₆	CCCTTAATCCCC AACTATACAATCTACTACTTCACCCTAACTCCCC
48	S-R ₂₂ -C ₈	CCCTTAATCCCC AACTATACAACCTACTACCTCACCCTAACTCCCC
49	S-PEG ₅ -T ₄	CCCTTAATCCCCTT-CH2-(CH2-O-CH2)5-CH2-TTCCCTAACTCCCC
50	S-PEG ₅	CCCTTAATCCCC-CH2-(CH2-O-CH2)5-CH2-CCCTAACTCCCC
51	BG	CCCTTTAACCCC -T ₁₅ -CCCTCTTAACCC
52	BY	CCCTTTAACCCC-T ₁₅ -CCCTTAATCCCC
53	BR	CCCTTTAACCCC-T ₁₅ -CCTCCTTCCTCC
54	BN	CCCTTTAACCCC-T ₁₅ -CCCTAACTCCCC
55	GY	CCCTCTTAACCC-T ₁₅ -CCCTTAATCCCC

56	GR	CCCTCTTAACCC-T ₁₅ -CCTCCTTCCTCC
57	GN	CCCTCTTAACCC-T ₁₅ -CCCTAACTCCCC
58	YR	CCCTTAATCCCC-T ₁₅ -CCTCCTTCCTCC
59	RN	CCTCCTTCCTCC-T ₁₅ -CCCTAACTCCCC
60	YY	CCCTTAATCCCC-T ₁₅ -CCCCTAATTCCC
61	NN	CCCCTCAATCCC-T ₁₅ -CCCTAACTCCCC
62	BB	CCCTTTAACCCC-T ₁₅ -CCCCAATTTCCC
63	GG	CCCAATTCTCCC-T ₁₅ -CCCTCTTAACCC
64	RR	CCTCCTTCCTCC-T ₁₅ -TCCTCCTCCTCC
65	T ₁₅ -N	T ₁₅ - CCCCTCAATCCC
66	N-T ₁₅	CCCCTCAATCCC-T ₁₅
67	Y-T ₁₅	CCCTTAATCCCC-T ₁₅
68	R-T ₁₅	CCTCCTTCC-T ₁₅
69	G-T ₁₅	CCCTCTTAACCC-T ₁₅
70	B-T ₁₅	CCCTTTAACCCC-T ₁₅
71	S-1	CCCTTAATCCCC TATAATAAATTTTAAATATTATTAAT
72	S-G	ATTAATAAATAATATTTAAAAATTTATTATAGGGTGGGGTGGGGTGGGGG
73	Y	CCCTTAATCCCC
74	Ν	CCCTAACTCCCC

*The nucleobases in orange, purple, blue, green and red color represent yellow, near-IR, blue, green and red emitter-nucleation sequences, respectively. The nucleobases in wine red represent G-enhancer sequences.

2. Supplementary Results

2.1 Four modes of emitter pair

Figure S1. Fluorescence emission spectra of four modes of emitter pair in close proximity. (A) Emission spectra of DNA/AgNCs produced by T1, T2, and the mixture of T1 and T2, respectively. The produced emitter pairs are located at end of T1 and T2 with complementary tails of polythymine and polyadenine, which are difficult to binding Ag ions, exclude the possibility that complementary stem domain participates to form fluorescent emitter pair. (B) Emission spectra of DNA/AgNCs produced by T3, T4, and the mixture of T3 and T4, respectively. (C) Comparison of fluorescence emission of DNA/AgNCs stabilized by four modes of emitter pairs provided by T5, T6, mixture of T1 and T2, and mixture of T3 and T4. The final concentrations of all DNA templates used in the reaction system were 1 μ M.

Figure S2. Fluorescence emission spectra of AgNCs stabilized by $S-T_n$ (n=5, 10, 15, 20, 25, 30, 35, 70) with n thymines, S-0 without spacer, $Y-T_{15}$ containing Y emitter and 15-nt polythymine spacer and T_{15} -N containing N emitter and 15-nt polythymine spacer.

2.3 S-G_n/AgNCs (n=1, 3, 5, 7, 10, 16 and 18)

Figure S3. The fluorescence enhancement ratio F/F_0 values for AgNCs stabilized by DNA template (S-G_n, n=1, 3, 5, 7, 10, 16 and 18) with guanine-rich spacers. F is the fluorescence intensity of S-G_n/AgNCs at 646 nm, F₀ is the fluorescence intensity of Y-T₁₅/AgNCs at 646 nm. The reason of selection of guanine-rich sequence not polyguanine is that longer polyguanine sequence cannot be obtained by the limited commercial DNA synthesis technology. The final concentrations of all DNA templates used in the reaction system were 1 μ M.

2.4 Changes in fluorescence intensity before and after adding inhibitor

Figure S4. Comparison in the fluorescence intensity of S-AT/AgNCs before and after adding the complement of spacer in S-AT as inhibitor. F is the fluorescence intensities of AgNCs stabilized by S-AT at 608 nm, F_0 is the fluorescence intensities of Y-T₁₅/AgNCs at 608 nm.

Figure S5. (A) Schematic illustration of the fluorescence quenching of Ag emitter pair from the duplex of T7 and T8 via the hybridization between T7 and inhibitor. (B) Emission spectra of DNA/AgNCs produced by the mixture of T7, T8, and inhibitor (I) according to different molar ratios (I/T7/T8 ratios).

In the competitive binding experiment, the molar ratio [0:1:1] indicates the mixture of 0 μ M I, 1 μ M T7 and 1 μ M T8, [0:1:0] and [0:0:1] indicate 1 μ M T7 and 1 μ M T8 present alone, respectively; [1:2:2], [1:1:1], [2:1:1], [4:1:1], and [8:1:1] indicate 0.5 μ M, 1 μ M, 2 μ M, 4 μ M and 8 μ M I plus 1 μ M T7 and 1 μ M T8, respectively.

2.5 The replacement of nucleobase in spacer of DNA template

Figure S6. Comparison of fluorescence emission spectra of AgNCs stabilized by DNA templates containing increased number of cytosines in a spacer sequence initially containing only adenine and thymine. S-R₁₅-C₃, S-R₁₅-C₄, and S-R₁₅-C₅ represent the DNA templates with substitution of 3 thymines, 4 thymines, and 5 thymines by cytosine in the original 15-nt adenine- and thymine-rich spacer sequence, respectively, and the DNA template (S-R₁₅-C₀) without cytosine in spacer sequence as a control. The final concentrations of tested DNA templates in the reaction system were 1 μ M.

2.6 S-PEG(5)-T4/AgNCs and S-PEG(5)/AgNCs

Figure S7. Fluorescence emission spectra of AgNCs stabilized by S-PEG(5)-T4 containing uncharged poly-ethylene glycol (PEG) and 4-nt thymines and S-PEG(5) without 4-nt thymines, respectively. The final concentrations of all the templates in the reaction system were 1 μ M.

2.7 The emission spectra of DNA/AgNCs at different excitation

Figure S8. Fluorescence emission spectra of AgNCs stabilized by (A) S-T₁₅, (B) S-A₁₅, (C) S-C₁₅, (D) S-G₁₆, and (E) S-0, respectively, with excitation from 500-600 nm in 20 nm steps.

2.8 The mixture of two templates containing one emitter and 15-nt polythymine

Figure S9. Fluorescence emission spectra of AgNCs stabilized by mixture of the two DNA templates containing one emitter-nucleation sequence and 15-nt polythymine spacer. The final concentrations of all DNA templates in the reaction system were 1 μ M.

2.9 Comparison of DNA/AgNCs from our design and the reported templates.

DNA template	Concentration (µM)	Reduction time (min)	Excitation/Emission (nm)	Fluorescence intensity (a.u.)
S-T ₁₅	1	15	550/604	60239±288
S-1 and S-G ¹	1	60	568/630	35934±942
Y ²	1	60	472/562	544±3
N^2	1	60	560/616	1460±49

Table S2. Comparison of DNA/AgNCs from our design and the reported templates.

2.10 The investigation on energy transfer

Figure S10. (A) Excitation (dashed curves) and emission spectra (solid curves) for Y-T₁₅ and T₁₅-N. Y-T₁₅ contains with a yellow emitter and 15-nt polythymine spacer, and T₁₅-N contains a near-IR emitter and 15-nt polythymine spacer. The final concentrations of Y-T₁₅ and T₁₅-N templates were 1 μ M in the reaction system. (B) Excitation (dashed curves) and emission spectra (solid curves) for YN template (equal to S-T₁₅). The final concentrations of the templates in the reaction system were 1 μ M.

2.11 The effect of AgNO₃ with different concentration

Figure S11. (A) Absorption spectra of AgNCs stabilized by S-T₁₅ after adding AgNO₃ with different concentration. (B) The fluorescence enhancement ratio change with increase of AgNO₃. The fluorescence enhancement ratio is the fluorescence intensity of DNA/AgNCs at 604 nm under different ratio of DNA/Ag⁺ versus the fluorescence intensity of DNA/AgNCs with 1:6 of DNA/Ag⁺ at 604 nm used in the conventional method.

2.12 The effect of different pH

Figure S12. (A) Absorption spectra of AgNCs stabilized by $S-T_{15}$ at different pH. (B) The fluorescence enhancement ratio change with pH from 6.0 to 8.0. The fluorescence enhancement ratio is the fluorescence intensity of DNA/AgNCs at different pH versus the fluorescence intensity of DNA/AgNCs under pH 7.0 at 604 nm used in the conventional method.

3. References

- 1 H. C. Yeh, J. Sharma, J. J. Han, J. S. Martinez and J. H. Werner, *Nano Lett.*, 2010, **10**, 3106-3110.
- C. I. Richards, S. Choi, J. C. Hsiang, Y. Antoku, T. Vosch, A. Bongiorno, Y. L. Tzeng and R. M. Dickson, J. Am. Chem. Soc., 2008, 130, 5038-5039.