Electronic Supplementary Material (ESI) for RSC Advances.

Clear Piezochromic Behaviors of AIE-active Organic Powders under Hydrostatic Pressure

Mi Ouyang,^{*a*} Lingling Zhan,^{*a*} Xiaojing Lv,^{*a*} Feng Cao, ^{*b*} Weijun Li,^{*a*} Yujian

Zhang $*^{b}$, Kunyang Wang, ^b and Cheng Zhang $*^{a}$

- ^a College of Chemical Engineering and Materials Science, Zhejiang University of Technology, Caowang Road No.18 Hangzhou 310000, P. R. China E-mail: <u>czhang@zjut.edu.cn</u>
- ^b Department of Materials chemistry, Huzhou Teachers College, P. R. China E-mail:<u>sciencezyj@foxmail.com</u>

Table S1 Time-resolved emission-decay curves of the crystals β -CN-TPA under different mechanical grinding with Function $I \propto \Sigma_i A_i \exp(-t/\tau_i)$ (A_i and τ_i are the relative weights and lifetimes respectively, *i*=1, 2). Excitation wavelength 370 nm

	A_1/A_2	$\lambda_{ex}(\mathbf{nm})$	$ au_l(\mathbf{ns})$	$ au_2$ (ns)	$ au_{\mathrm{av}}\left(\mathrm{ns} ight)$	χ^2	$\Phi_f(\mathbf{\%})$
Crystal	100%/	524	2.7		2.7	1.172	45
Grinding	100%/	522	2.4		2.4	1.992	46
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$							

Scheme S1 Synthesis routes; (*a*) toluene/THF, K_2CO_3 aqueous solution, 90 °C for 24 h; (b) sodium methoxide, anhydrous ethanol, at the room temperature for 6 h.

Scheme S2 Molecular structures of the α -CN-TPA

Fig. S1 ¹H NMR Spectral of the β -CN-TPA in CDCl₃

Fig. S2 13 C NMR spectral the β -CN-TPA in CDCl₃

Fig. S3 HRMS spectral of the β -CN-TPA in CDCl₃

Fig. S 4 SEM images of the spherical nanostructures prepared from THF/H₂O (10:0) and (1:9) mixtures of β -CN-TPA. Solution concentration: 10 μ M.

Fig. S5 Fluorescence spectra and photograph (under UV light, 365 nm) of the β -CN-TPA crystalline powders and the ground powders.

Fig. S6 Powder X-ray diffraction patterns of the β -CN-TPA in different state (before and after grinding)

Fig. S7 Fluorescence spectra of the β -CN-TPA under the hydrostatic pressure (from the compression to decompression).

Fig. S8 (*a*) Raman spectra of the β -CN-TPA crystal under the hydrostatic pressure from 5.69 GPa to 1 atm in the spectral regions 900-2300 cm⁻¹; (*b*) Comparison of the Raman spectra of the β -CN-TPA in the original and released states.