Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2015

Optimizing Ring-opening Polymerization of ε-Caprolactone by Using Aluminum Complexes Bearing Amide as Catalysts and Their Application in Synthesizing Poly-ε-caprolactone with Special Initiators and Other Polycycloesters

Hsi-Ching Tseng,^a Fu-Shen Chen,^a Michael Y. Chiang,^{ab} Wei-Yi Lu,^a Yu-Hsieh Chen,^a Yi-Chun Lai,^a Hsuan-Ying Chen*^a

Table of Contents

Table S1 Kinetic study of CL polymerization with various Al complexes in toluene 5
mL, [CL] = 2.0 M
Table S2 Kinetic study of CL polymerization with various concentration of
MfOMeAlMe2 in toluene 5 mL, [CL] = 2.0 M at room temperature
Figure S1-S36 ¹ H and ¹³ C NMR spectra of ligands and associated Al complexes .4-21
Figure S37 ¹ H NMR spectrum of PCL with PEG-200
Figure S38 ¹ H NMR spectrum of PCL with DMAE
Figure S39 ¹ H NMR spectrum of PCL with BHEDS. 23
Figure S40 ¹ H NMR spectrum of PCL with HOSSBr
Figure S41 ¹ H NMR spectrum of PCL with PEGSS. 24
Figure S42 ¹ H NMR spectrum of PVL
Figure S43 ¹ H NMR spectrum of PBrCL

Table S1 Kinetic study of CL polymerization with various Al complexes in toluene 5

^a Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung, Taiwan, 80708, R.O.C.

^b Department of Chemistry, National Sun Yat-sen University, Kaohsiung, Taiwan, 80424, R.O.C.

mL, [CL] = 2.0 M at room temperature

time	TsOMe	TsiPr	MsOMe	MsiPr	ТсОМе	TciPr	CbOMe	CbiPr	MfOMe
min	Conv.(%)								
5									8
10	4		2				10		23
13		6							
15		9		10				39	39
17		12							
20	24	16	42	22	19		20		50
25				28					59
30	37		60	37.5			43	68	
35									74
40		27	76	52	43		56	78	
45						39		84	83
50	58		82	63			64	88	
58								92	
60	65	42	89	74	6	68	69		91
70	74		92				78		
75						78			95
80	80	52		86	74		83		
90	84					84	86		
100	88	62		92	78	88	89		
110							93		
120		68			86	92			
140		74			90				
160		79							
220		89							
k _{obs}	0.0227 (5)	0.0102 (1)	0.0394 (10)	0.0290 (6)	0.0173 (5)	0.0263 (18)	0.0248 (7)	0.0471 (2)	0.0422 (3)
IP	9.70 (147)	6.27 (96)	5.34 (116)	13.07 (109)	7.12 (280)	20.5 (58)	8.67 (193)	5.6 (18)	3.36 (26)

Table S2 Kinetic study of CL polymerization with various concentration of

MfOMeAlMe2 in toluene 5 mL, [CL] = 2.0 M at room temperature

Time	[CL] : [MfOMeAlMe2] : [BnOH]							
	100:0.5: 1	100:1: 2	100:1.5: 3	100:2: 4				
min		Con	<u> </u>					
3				0.37				
5		8	0.22	0.53				
10		23	0.4	0.73				
13				0.82				
15		39	0.64	0.87				
17				0.89				
18			0.72					
20		50	0.78					
25		59						
30			0.93					
35		74						
45		8913						
60		95						
72								
120	0.11							
150	0.17							
230	0.26							
290	0.3							
350	0.36							
kobs	0.0014 (1)	0.0422 (3)	0.0980 (61)	0.1257 (34)				
IP	22.91 (1530)	3.36 (26)	4.05 (114)	0				

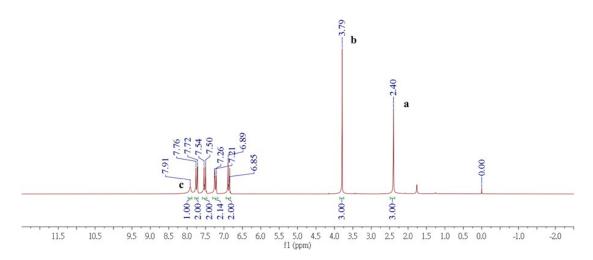


Figure S1 ¹H NMR spectrum of TsOMe-H in CDCl₃

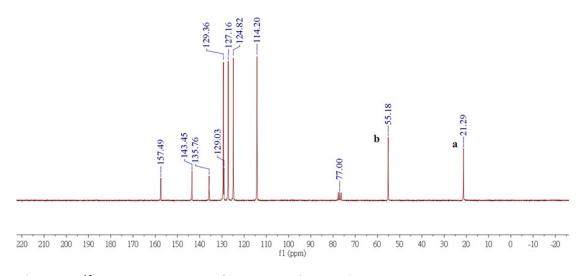
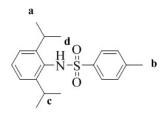



Figure S2 13 C NMR spectrum of TsOMe-H in CDCl $_3$

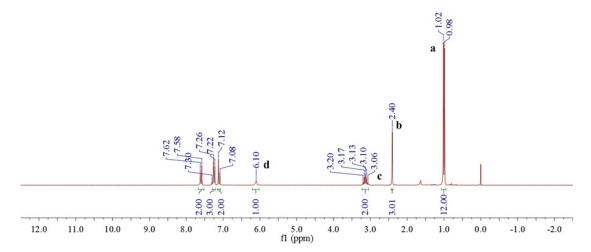


Figure S3 ¹H NMR spectrum of TsiPr-H in CDCl₃

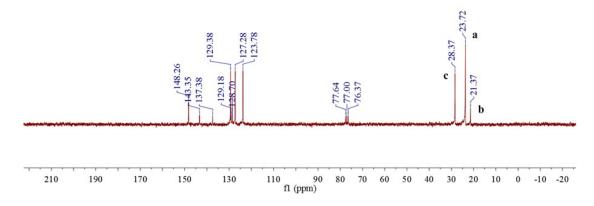


Figure S4 13 C NMR spectrum of TsiPr-H in CDCl₃

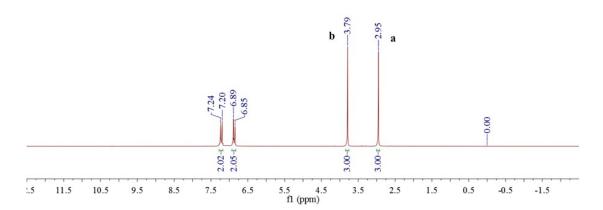


Figure S5 ¹H NMR spectrum of MsOMe-H in CDCl₃

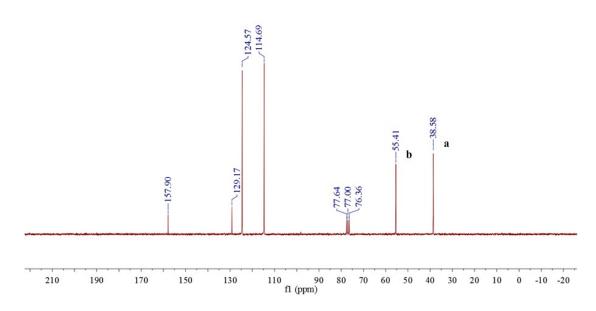


Figure S6 13 C NMR spectrum of MsOMe-H in CDCl₃

$$\overset{a}{\overset{H}{\overset{O}{\bigcirc}}} \overset{O}{\overset{D}{\overset{O}{\bigcirc}}} b$$

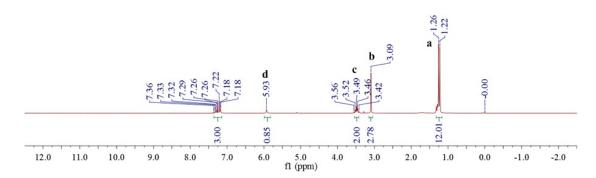


Figure S7 ¹H NMR spectrum of MsiPr-H in CDCl₃

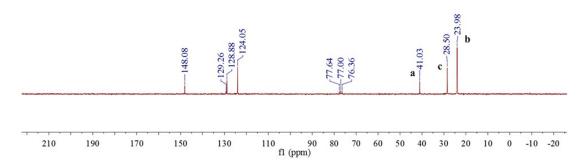


Figure S8 13 C NMR spectrum of MsiPr-H in CDCl $_3$

$$_{\mathbf{b}}$$
 O NH $_{\mathbf{O}}$

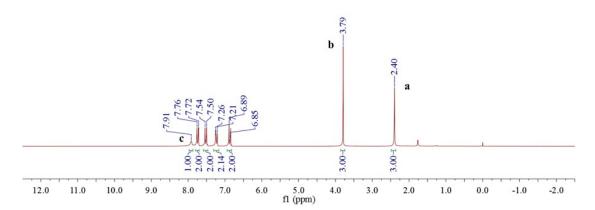


Figure S9 ¹H NMR spectrum of TcOMe-H in CDCl₃

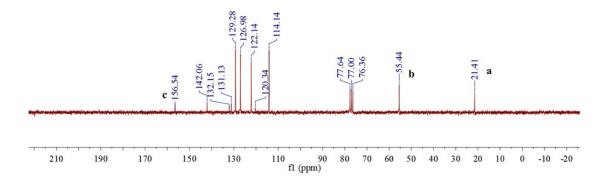


Figure S10 13 C NMR spectrum of TciOMe-H in CDCl $_3$

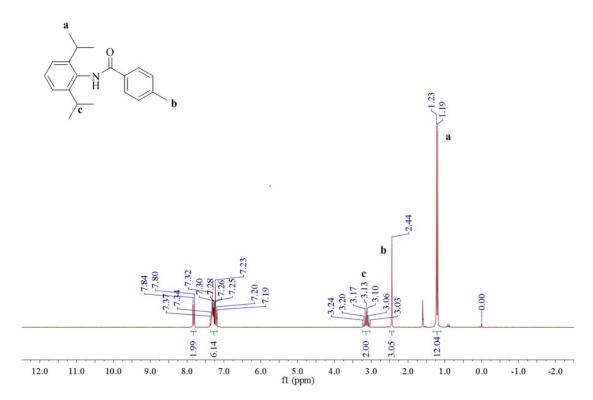


Figure S11 ¹H NMR spectrum of TciPr -H in CDCl₃

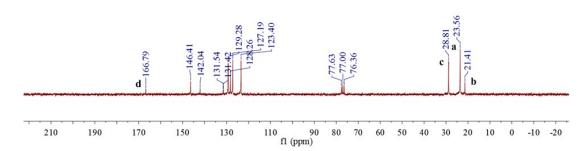


Figure S12 13 C NMR spectrum of TciPr -H in CDCl $_3$

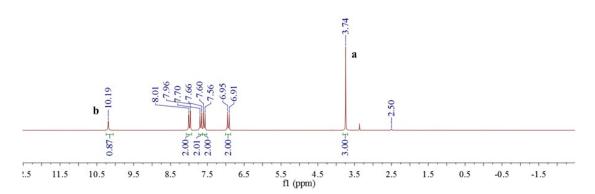


Figure S13 ¹H NMR spectrum of CbOMe-H in d-DMSO

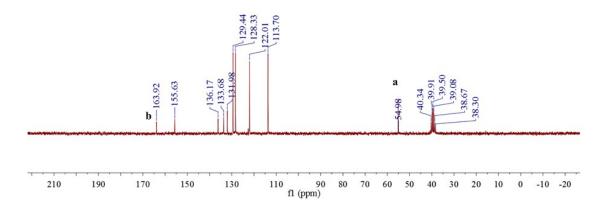
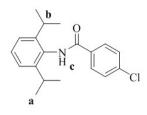



Figure S14 13 C NMR spectrum of CbOMe-H in d-DMSO

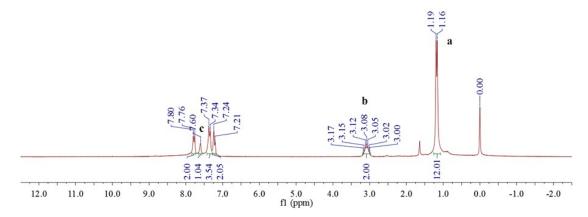


Figure S15 ¹H NMR spectrum of CbiPr-H in CDCl₃

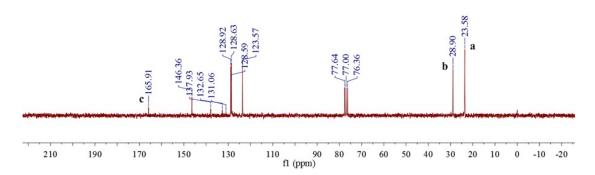


Figure S16 13 C NMR spectrum of CbiPr -H in CDCl₃

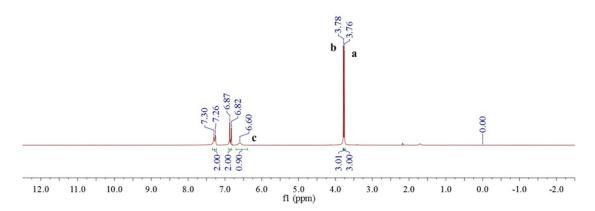


Figure S17 ¹H NMR spectrum of MfOMe-H in CDCl₃

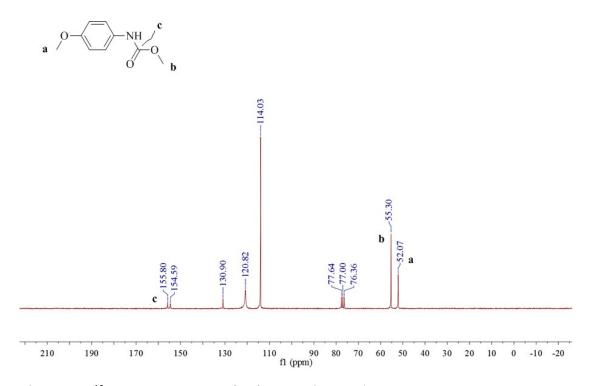


Figure S18 13 C NMR spectrum of MfOMe-H in CDCl $_3$

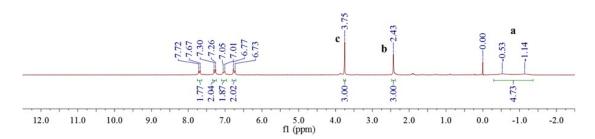


Figure S19 ¹H NMR spectrum of TsOMeAlMe₂ in CDCl₃

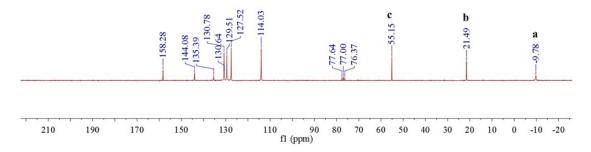
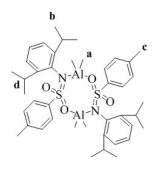



Figure S20 ^{13}C NMR spectrum of TsOMeAlMe2 in CDCl3

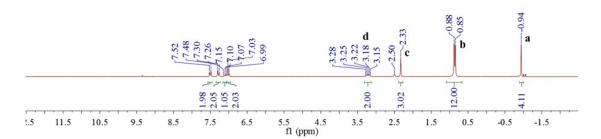


Figure S21 1 H NMR spectrum of TsiPrAlMe $_{2}$ in d-DMSO

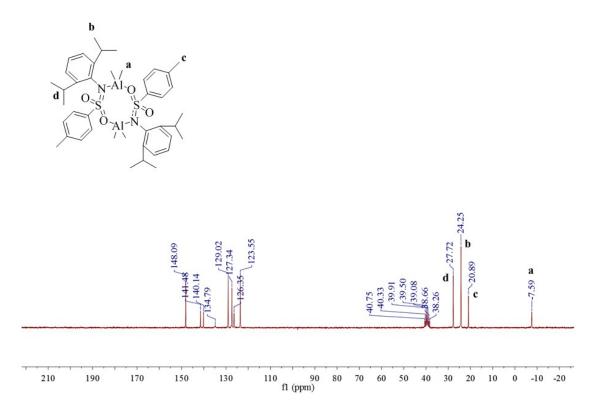
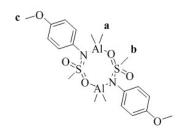



Figure S22 13 C NMR spectrum of TsiPrAlMe $_2$ in d-DMSO

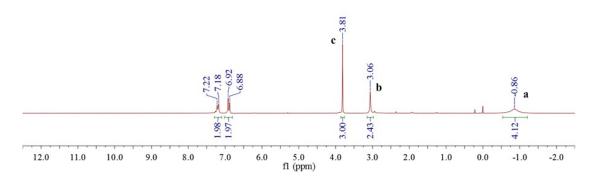


Figure S23 ¹H NMR spectrum of MsOMsAlMe₂ in CDCl₃

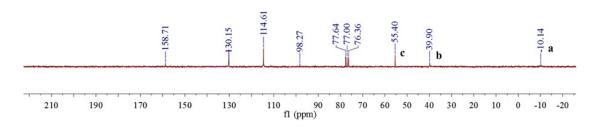
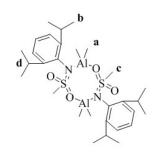



Figure S24 13 C NMR spectrum of MsOMeAlMe $_2$ in CDCl $_3$

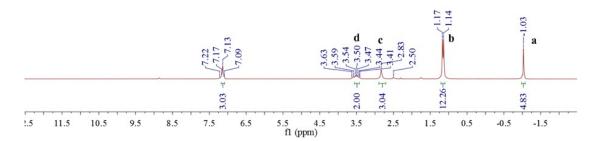
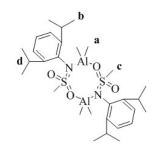



Figure S25 ¹H NMR spectrum of MsiPrAlMe₂ in d-DMSO

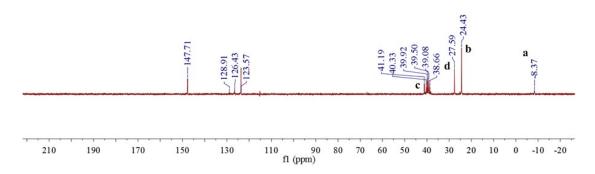
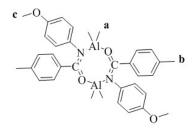



Figure S26 13 C NMR spectrum of MsiPrAlMe $_2$ in d-DMSO

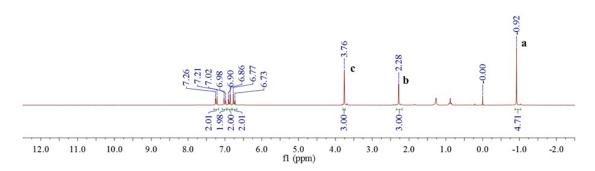
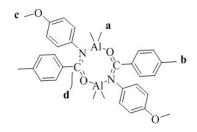



Figure S27 ¹H NMR spectrum of TcOMeAlMe₂ in CDCl₃

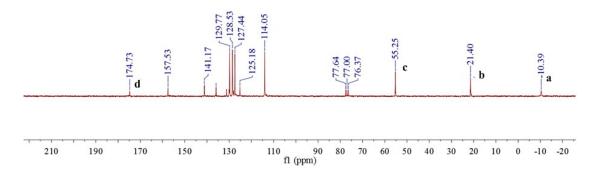
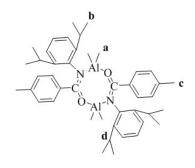



Figure S28 13 C NMR spectrum of TcOMeAlMe $_2$ in CDCl $_3$

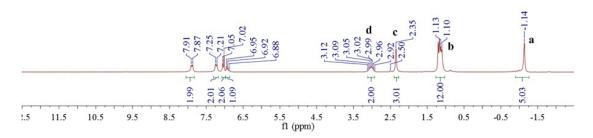


Figure S29 ¹H NMR spectrum of TciPrAlMe₂ in d-DMSO

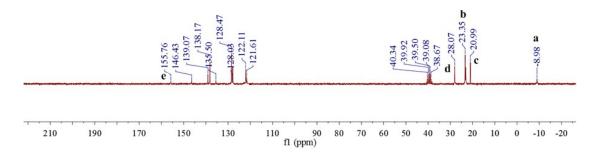


Figure S30 13 C NMR spectrum of TciPrAlMe $_2$ in d-DMSO

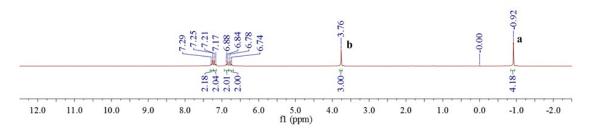


Figure S31 1 H NMR spectrum of CbOMeAlMe $_{2}$ in CDCl $_{3}$

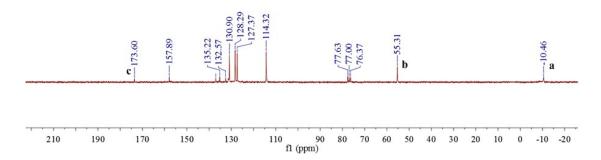
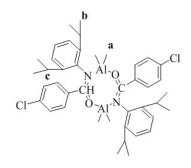



Figure S32 13 C NMR spectrum of CbOMeAlMe₂ in CDCl₃

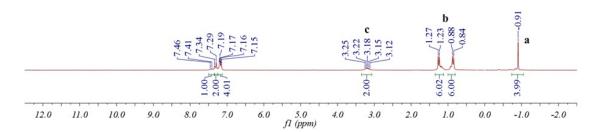


Figure S33 ¹H NMR spectrum of CbiPrAlMe₂ in CDCl₃

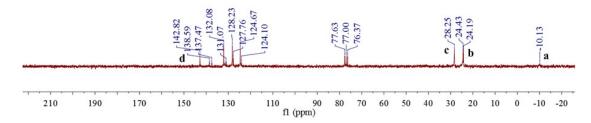
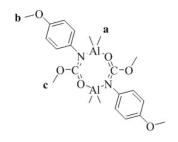



Figure S34 ¹³C NMR spectrum of CbiPrAlMe₂ in CDCl₃

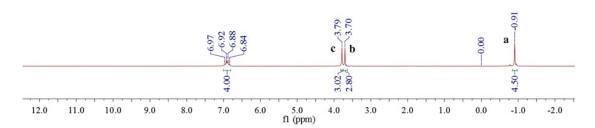


Figure S35 ¹H NMR spectrum of MfOMeAlMe₂ in CDCl₃

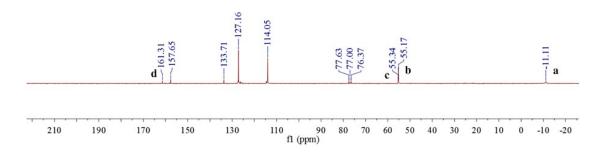
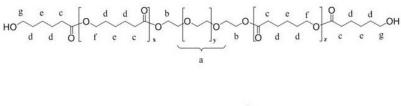
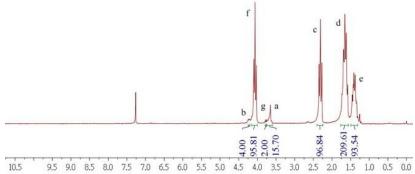




Figure S36 ¹³C NMR spectrum of MfOMeAlMe₂ in CDCl₃

Figure 37. ¹H NMR spectrum of PCL in CDCl₃ catalyzed by **MfOMeAlMe₂** with PEG-200 (**Table 3**, entry 1)

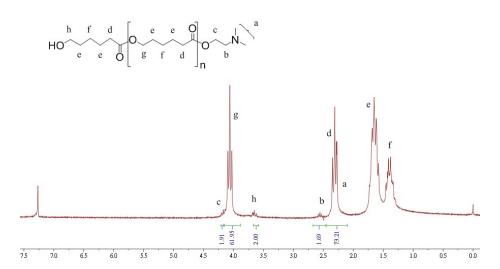


Figure 38. ¹H NMR spectrum of PCL in CDCl₃ catalyzed by **MfOMeAlMe₂** with DMAE (**Table 3**, entry 2)

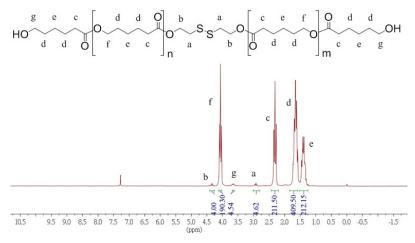
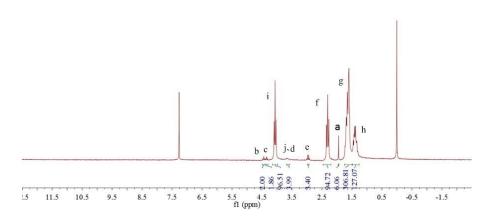
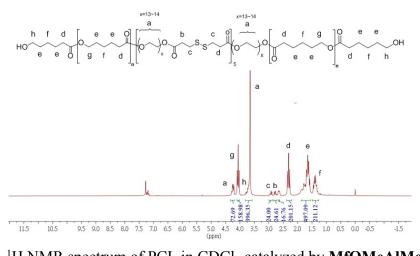
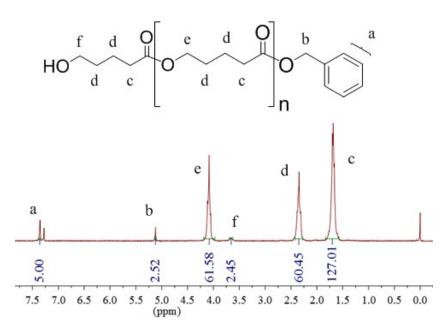




Figure 39. ¹H NMR spectrum of PCL in CDCl₃ catalyzed by **MfOMeAlMe₂** with BHEDS (**Table 3**, entry 3)


$$HO \xrightarrow{g} \xrightarrow{g} O \xrightarrow{g} O \xrightarrow{c} S \xrightarrow{d} O \xrightarrow{Br} a$$

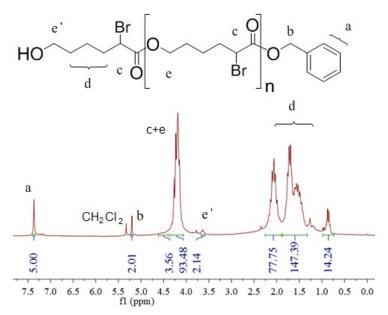

Figure 40. ¹H NMR spectrum of PCL in CDCl₃ catalyzed by **MfOMeAlMe₂** with HOSSBr (**Table 3**, entry 4)

Figure 41. ¹H NMR spectrum of PCL in CDCl₃ catalyzed by **MfOMeAlMe₂** with PEGSS (**Table 3**, entry 5)

Figure S42. ¹H NMR spectrum of PVL in CDCl₃ catalyzed by **MfOMeAlMe₂** with BnOH (**Table 4**, entry 1)

Figure S43. ¹H NMR spectrum of PBrCL in CDCl₃ catalyzed by **MfOMeAlMe₂** with BnOH (**Table 4**, entry 2)