A facile catalyst-free synthesis of 2-vinylquinolines via direct deamination reaction occurring during Mannich synthesis

[#]Jichao Xiao, [#]Ye Huang, Zilan Song, Wenhua Feng^{*}

Institute of Materia Medica, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China.

1.	General information	S2
2.	General experimental procedure	S2
3.	Characterization of products	S3
4.	¹ H and ¹³ C NMR spectra of products	S9

^{*} Corresponding author: Email: fwh@imm.ac.cn

1. General information

All reagents and solvents were purchased from commercial suppliers and used without further purification except as otherwise noted. Reactions were monitored through thin-layer chromatography (TLC), spots were visualized using UV radiation (254 nm). Flash chromatography was performed using 200-300 mesh silica gel with distilled solvents. ¹H NMR and ¹³C NMR spectra were recorded using Bruker Advance 400M NMR spectrometers. Chemical shifts for ¹H NMR spectra are reported as δ in units of parts per million (ppm) downfield from SiMe4 (δ 0.0) and relative to the signal of chloroform-*d* (δ 7.260, singlet). Data are reported as follows: chemical shift, multiplicity (s=singlet, d=doublet, t=triplet, q=quartet, m=multiplet and br=broad), coupling constants in Hz and integration. Carbon nuclear magnetic resonance spectra (¹³C NMR) are reported as δ in units of parts per million (ppm) downfield from SiMe4 (δ 0.0) and relative to the signal of chloroform-*d* (δ 77.03, triplet). The mass spectra were recorded using FAB ionization techniques.

2. General experimental procedure

The mixture of **1** (5 mmol, 1 equiv), formaldehyde solution (6.5 mmol, 1.3 equiv), **2** (6.5 mmol, 1.3 equiv), and trimethylamine (0.1 ml) in 1,4-dioxane (2 ml) was heated at 100°C in a round bottom flask until the starting material **1** was completely consumed as indicated by TLC analysis. After being cooled down to room temperature, the solvent was removed under reduced pressure, water was added to the round bottom flask, extracted with CH_2Cl_2 , the solvent removed and the residue was purified by silica gel column chromatography (n-heptane/EtOAc) to afford the desired 2-Vinylquinolines **3**.

3. Characterization of products:

7-chloro-2-vinylquinoline (3a):

Following the general procedure, **3a** was obtained as an off-white solid (900 mg, 95%); ¹H NMR (400 MHz, CDCl₃): δ 8.09 (dd, J = 8.7, 2.7 Hz, 2H), 7.71 (d, J = 8.7 Hz, 1H), 7.58 (d, J

= 8.7 Hz, 1H), 7.45 (dd, J = 8.8, 2.0 Hz, 1H), 7.02 (dd, J = 17.7, 10.9 Hz, 1H), 6.32 (d, J = 17.7 Hz, 1H), 5.70 (d, J = 10.9 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 156.9, 148.4, 137.5, 136.1, 135.4, 128.6, 128.3, 125.7, 120.6, 118.7, 118.7. HRMS (ESI): calculated for C₁₁H₈ClN (M+H)⁺: 190.0424.

5-chloro-2-vinylquinoline (3b)

Following the general procedure, **3b** was obtained as a white solid (690 mg, 73%); ¹H NMR (400 MHz, CDCl₃): δ 8.13–7.99 (m, 2H), 7.68 (d, *J* = 8.6 Hz, 1H), 7.55 (d, *J* = 8.6 Hz, 1H), 7.42 (dd, *J* = 8.7, 2.0 Hz, 1H), 7.00 (dd, *J* = 17.6, 10.8 Hz, 1H), 6.30 (d, *J* = 17.6 Hz, 1H), 5.68 (d, *J* = 10.8 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 156.9, 148.3, 137.5, 136.2, 135.4, 128.6, 128.2, 127.3, 125.7, 120.7, 118.7. HRMS (ESI): calculated for C₁₁H₈ClN (M+H)⁺: 190.0424.

8-chloro-2-vinylquinoline (3c):

Following the general procedure, **3c** was obtained as a white solid (803 mg, 85%); ¹H NMR (400 MHz, CDCl₃): δ 8.11 (d, J = 8.5 Hz, 1H), 7.80 (d, J = 7.5 Hz, 1H), 7.69 (d, J = 8.1 Hz, 1H), 7.64 (d, J = 8.5 Hz, 1H), 7.39 (t, J = 7.8 Hz, 1H), 7.11 (dd, J = 17.7, 10.9 Hz, 1H), 6.37 (d, J = 17.6 Hz, 1H), 5.70 (d, J = 10.9 Hz, 1H). ¹³C NMR (100MHz, CDCl₃) δ 156.6, 144.1, 137.7, 136.7, 133.4, 129.7, 128.7, 126.6, 126.1, 120.7, 119.2. HRMS (ESI): calculated for C₁₁H₈CIN (M+H)⁺: 190.0424.

7-fluoro-2-vinylquinoline (3d)

Following the general procedure, **3d** was obtained as an off-white solid (735 mg, 85%); ¹H NMR (400 MHz, CDCl₃): δ 8.06 (d, J = 8.5 Hz, 1H), 7.70 (m, 2H), 7.52 (d, J = 8.5 Hz, 1H), 7.26 (dd, J = 8.8, 2.5 Hz, 1H), 6.99 (dd, J = 17.7, 10.9 Hz, 1H), 6.29 (d, J = 17.7 Hz, 1H), 5.67 (d, J = 10.9 Hz, 1H). ¹³C NMR (100MHz, CDCl₃) δ 164.4, 161.9, 156.9, 149.1, 137.7, 136.2, 129.4, 124.5, 120.5, 116.6, 113.1. HRMS (ESI): calculated for C₁₁H₈FN (M+H)⁺: 174.0725.

4-chloro-7-fluoro-2-vinylquinoline (3e)

Following the general procedure, **3e** was obtained as an off-white solid (787 mg, 76%); ¹H NMR (400 MHz, CDCl₃): δ 8.16 (dd, J = 9.2, 6.0 Hz, 1H), 7.69 (dd, J = 9.9, 2.5 Hz, 1H), 7.60 (s, 1H), 7.35 (dd, J = 8.7, 2.4 Hz, 1H), 6.93 (dd, J = 17.6, 10.8 Hz, 1H), 6.30 (d, J = 17.7 Hz, 1H), 5.71 (d, J = 10.8 Hz, 1H). ¹³C NMR (100MHz, CDCl₃) δ 164.9, 162.5, 157.1, 142.8, 136.7, 126.4, 121.4, 118.1, 117.6, 117.4, 113.5. HRMS (ESI): calculated for C₁₁H₇ClFN (M+H)⁺: 208.0323.

6-bromo-2-vinylquinoline (3f)

Following the general procedure, **3f** was obtained as a white solid (990 mg, 85%); ¹H NMR (400 MHz, CDCl₃): δ 8.03 (d, J = 8.6 Hz, 1H), 7.98 – 7.90 (m, 2H), 7.76 (dd, J = 9.0, 2.1 Hz, 1H), 7.61 (d, J = 8.6 Hz, 1H), 7.02 (dd, J = 17.7, 10.9 Hz, 1H), 6.31 (d, J = 17.7 Hz, 1H), 5.70 (d, J = 10.9 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 156.4, 146.5, 137.5, 135.3, 133.1, 131.1, 129.5, 128.5, 120.4, 120.1, 119.3. HRMS (ESI): calculated for C₁₁H₈BrN (M+H)⁺: 234.9946.

8-bromo-2-vinylquinoline (3g)

Following the general procedure, **3g** was obtained as a white solid (760 mg, 65%); ¹H NMR (400 MHz, CDCl₃): δ 8.09 (d, J = 8.5 Hz, 1H), 8.02 (d, J = 7.5 Hz, 1H), 7.73 (d, J = 8.1 Hz, 1H), 7.61 (d, J = 8.5 Hz, 1H), 7.33 (d, J = 7.8 Hz, 1H), 7.10 (dd, J = 17.7, 10.8 Hz, 1H), 6.41 (d, J = 17.6 Hz, 1H), 5.70 (d, J = 10.8 Hz, 1H). ¹³C NMR (100MHz, CDCl₃) δ 156.8, 144.9, 137.6, 136.8, 133.3, 128.7, 127.35, 126.6, 125.1, 120.7, 119.4. HRMS (ESI): calculated for C₁₁H₈BrN (M+H)⁺: 234.9956.

2-vinylquinoline (3h)

Following the general procedure, **3h** was obtained as an off-white solid (566 mg, 73%); ¹H NMR (400 MHz, CDCl₃): δ 8.07 (d, J = 8.5 Hz, 1H), 8.01 (dd, J = 8.5, 2.8 Hz, 1H), 7.70 (d, J = 8.2 Hz, 1H), 7.65 (d, J = 7.7 Hz, 1H), 7.52 (dd, J = 8.5, 2.4 Hz, 1H), 7.44 (d, J = 7.5 Hz, 1H), 7.03 (dd, J = 17.7, 10.9 Hz, 1H), 6.25 (d, J = 17.7 Hz, 1H), 5.63 (d, J = 10.9 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 155.9, 147.9, 137.9, 136.24, 129.6, 129.3, 127.4, 126.2, 120.7, 119.8, 118.3. HRMS (ESI): calculated for C₁₁H₉N (M+H)⁺: 156.0818.

6-methoxy-2-vinylquinoline (3i)

Following the general procedure, **3i** was obtained as an off-white solid (805 mg, 87%); ¹H NMR (400 MHz, CDCl₃): δ 7.96 (dd, *J* = 8.9, 4.9 Hz, 2H), 7.53 (d, *J* = 8.5 Hz, 1H), 7.33 (dd, *J* = 9.2, 2.8 Hz, 1H), 7.02 (d, *J* = 4.8 Hz, 1H), 7.03 (dd, *J* = 17.7, 10.9 Hz, 1H), 6.20 (d, *J* = 17.7 Hz, 1H), 5.58 (d, *J* = 10.9 Hz, 1H), 3.90 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 157.6,153.7, 143.9, 137.9, 135.1, 130.7, 128.4, 122.2, 118.6, 118.6, 105.1, 55.5. HRMS (ESI): calculated for C₁₂H₁₁NO (M+H)⁺: 186.0923.

8-methoxy-2-vinylquinoline (3j)

Following the general procedure, **3j** was obtained as a white solid (832 mg, 90%); ¹H NMR (400 MHz, CDCl₃): δ 8.03 (d, *J* = 8.6 Hz, 1H), 7.64 (d, *J* = 8.7 Hz, 1H), 7.38 (d, *J* = 7.9 Hz, 1H), 7.31 (d, *J* = 8.2 Hz, 1H), 7.13 (dd, *J* = 17.8, 10.9 Hz, 1H), 7.00 (d, *J* = 7.6 Hz, 1H), 6.17 (d, *J* = 17.8 Hz, 1H), 5.62 (d, *J* = 11.2 Hz, 1H), 4.05 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 155.2, 155.2, 139.7, 138.5, 136.2, 128.5, 126.5, 119.4, 119.3, 118.4, 107.9, 56.1. HRMS (ESI): calculated for C₁₂H₁₁NO (M+H)⁺: 186.0925.

8-methyl-2-vinylquinoline (3k)

Following the general procedure, **3k** was obtained as an off-white solid (676 mg, 80%); ¹H NMR (400 MHz, CDCl₃): δ 8.06 (d, J = 8.5 Hz, 1H), 7.62 (d, J = 8.1 Hz, 1H), 7.55 (d, J = 7.0 Hz, 2H), 7.40 (d, J = 7.7 Hz, 1H), 7.10 (dd, J = 17.8, 10.8, 1H), 6.39 (d, J = 17.6 Hz, 1H), 5.66 (d, J = 10.8 Hz, 1H), 2.89 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 154.8, 147.1, 138.4, 137.4, 136.5, 129.7, 127.5, 126.1, 125.5, 119.2, 118.4, 17.9. HRMS (ESI): calculated for C₁₂H₁₁N (M+H)⁺: 170.0969.

6-methyl-2-vinylquinoline (31)

Following the general procedure, **31** was obtained as an off-white solid (777 mg, 92%); ¹H NMR (400 MHz, CDCl₃): δ 7.97 (d, J = 8.1 Hz, 2H), 7.58 – 7.43 (m, 3H), 7.02 (dd, J = 17.7, 10.9 Hz, 1H), 6.24 (d, J = 17.7 Hz, 1H), 5.61 (d, J = 10.9 Hz, 1H), 2.51 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 155.3, 146.6, 138.1, 136.2, 135.7, 131.9, 129.06, 127.5, 126.4, 119.3, 118.3, 21.58. HRMS (ESI): calculated for C₁₂H₁₁N (M+H)⁺: 170.0969.

1-vinylisoquinoline (3q)

Following the general procedure, **3q** was obtained as an off-white solid (572 mg, 80%); ¹H NMR (400 MHz, CDCl₃): δ 8.53 (d, *J* = 5.6 Hz, 1H), 8.25 (d, *J* = 8.4 Hz, 1H), 7.81 (d, *J* = 8.2 Hz, 1H), 7.71 – 7.63 (m, 1H), 7.67 – 7.59 (m, 1H), 7.59 (d, *J* = 5.5 Hz, 1H), 7.57 (dd, *J* = 16.9, 10.8 Hz, 1H), 6.53 (d, *J* = 16.9 Hz, 1H), 5.72 (d, *J* = 10.8 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 154.8, 142.3, 136.6, 132.2, 129.9, 127.2, 127.2, 126.4, 124.6, 121.7, 120.3. HRMS (ESI): calculated for C₁₁H₉N (M+H)⁺: 156.0818.

2-vinylquinoxaline (3r)

Following the general procedure, **3r** was obtained as a yellow solid (491 mg, 63%); ¹H NMR (400 MHz, CDCl₃): δ 8.97 (d, J = 2.3 Hz, 1H), 8.04 (d, J = 7.3 Hz, 2H), 7.78 – 7.65 (m, 2H), 7.02 (dd, J = 17.9, 11.1 Hz, 1H), 6.45 (d, J = 17.9 Hz, 1H), 5.77 (d, J = 11.1 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 150.4, 143.5, 142.1, 141.7, 134.8, 130.2, 129.5, 129.3, 129.1, 122.1. HRMS (ESI): calculated for C₁₀H₈N₂ (M+H)⁺: 157.0759.

2-vinylbenzothiazole (3s)

Following the general procedure, **3s** was obtained as a white solid (603 mg, 75%); ¹H NMR (400 MHz, CDCl₃): δ 8.00 (d, J = 8.1 Hz, 1H), 7.84 (d, J = 8.0 Hz, 1H), 7.46 (d, J = 7.7 Hz, 1H), 7.37 (d, J = 7.6 Hz, 1H), 7.04 (dd, J = 17.5, 10.9 Hz, 1H), 6.18 (d, J = 17.5 Hz, 1H), 5.75 (d, J = 10.9 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 167.1, 153.6, 134.3, 131.4, 126.2, 125.6, 123.2, 123.2, 121.5. HRMS (ESI): calculated for C₉H₇NS (M+H)⁺: 162.0376.

2-isopropenyl-quinoline (3t)

Following the general procedure, **3t** was obtained as a yellow oil (558 mg, 66%); ¹H NMR (400 MHz, CDCl₃): δ 8.12 (d, *J* = 8.4 Hz, 1H), 8.06 (dd, *J* = 8.6, 2.8 Hz, 1H), 7.76 (d, *J* = 8.1 Hz, 1H), 7.69 (dd, *J* = 11.5, 8.1 Hz, 2H), 7.49 (t, *J* = 7.5 Hz, 1H), 5.94 (s, 1H), 5.50 (s, 1H), 2.39 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 153.9, 143.2, 139.9, 131.4, 125.2, 124.8, 122.8, 122.6, 121.6, 113.7, 112.4, 16.1. HRMS (ESI): calculated for C₁₂H₁₁N (M+H)⁺: 170.0959.

1-(1-naphthalenyl)propen-1-one (3u)

Following the general procedure, **3u** was obtained as a colorless oil (100 mg, 15%); ¹H NMR (400 MHz, CDCl₃): δ 8.35 (dd, J = 8.2, 1.8 Hz, 1H), 7.98 (d, J = 8.3 Hz, 1H), 7.89 (d, J = 7.9 Hz, 1H), 7.72 (dd, J = 7.1, 1.2 Hz, 1H), 7.53 (m, 3H), 6.95 (dd, J = 17.4, 10.6 Hz, 1H), 6.27 (d, J = 17.3 Hz, 1H), 6.04 (d, J = 10.5 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 164.5, 161.9, 156.9, 148.9, 137.6, 136.3, 129.4, 124.5, 120.5, 117.9, 116.8, 116.6, 113.1. HRMS (ESI): calculated for C₁₃H₁₀O (M+H)⁺: 183.0357

Phenyl vinyl ketone (3v)

Following the general procedure, 3v was obtained as a yellow oil (72.6 mg, 13%); ¹H NMR (400 MHz, CDCl₃): δ 7.89 (dd, J = 8.0, 3.4 Hz, 2H), 7.50 (m, 1H), 7.40 (m, 2H), 7.12 (dd, J = 17.2, 11 Hz, 1H), 6.38 (d, J = 17.2 Hz, 1H), 5.85 (dd, J = 11.0 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 191.1, 137.4, 134.2, 133.2, 132.5, 130.3, 129.1, 128.9, 128.8, 77.80, 77.47, 77.15. HRMS (ESI): calculated for C₉H₈O (M+H)⁺: 133.0648.

4. ¹H and ¹³C NMR spectra of products

