Supplementary Materials

Synthesis of SrFeO3-x/g-C3N4 heterojunction with improved visible-light

photocatalytic activities in chloramphenicol and crystal violet degradation

Ho-Pan Lin^a, Chiing-Chang Chen^{a*}, Wenlian William Lee^{b,c*}, Ya-Yun Lai^d, Jau-

Yuan Chen^a, Ya-Qian Chen^d, Jing-Ya Fu^a

^a Department of Science Application and Dissemination, National Taichung

```
University of Education, Taichung 403, Taiwan
```

^b Department of Occupational Safety and Health, Chung-Shan Medical University,

Taichung 402, Taiwan

^c Department of Occupational Medicine, Chung-Shan Medical University Hospital,

Taichung 402, Taiwan

^d Department of Applied Cosmetology, National Tainan Junior College of Nursing

* Author to whom correspondence should be addressed

E-mail: ccchen@ms3.ntcu.edu.tw; wllee01@csmu.edu.tw

Fax: +886-4-2218-3560

Tel: +886-4-2218-3406 ; +886-4-24730022

Photocatalysts	Specific surface	Pore volume	Pore diameter	Band gap
	area (m²/g)	(cm^{3}/g)	(nm)	(eV)
g-C ₃ N ₄	17.60	0.1975	28.54	2.67
SrFeO _{3-x}	0.88	0.0055	33.01	
1wt.%-500-2	20.54	0.2037	27.40	2.67
2wt.% -500-2	24.03	0.2305	26.50	2.67
4wt.% -500-2	40.89	0.3365	22.62	2.67
6wt.% -500-2	55.23	0.4187	22.19	2.67
8wt.% -500-2	65.62	0.4783	22.35	2.67
10wt.% -500-2	34.62	0.2816	23.10	2.67
30wt.% -500-2	33.99	0.1985	18.60	2.54
50wt.% -500-2	9.57	0.0619	20.90	
70wt.% -500-2	4.31	0.0315	29.67	
90wt.% -500-2	0.96	0.0145	54.77	
4wt.% -400-2	11.38	0.1398	32.75	2.64
4wt.% -450-2	12.55	0.1432	31.07	2.66
4wt.% -500-2	40.89	0.3365	22.62	2.67
4wt.% -550-2	67.76	0.5264	25.90	2.66
4wt.% -600-2	N/A	N/A	N/A	
4wt.% -500-1	19.39	0.1772	25.84	2.67
4wt.% -500-1.5	30.55	0.2316	21.10	2.67
4wt.% -500-2	40.89	0.3365	22.62	2.67
4wt.% -500-2.5	45.73	0.2986	18.32	2.67
4wt.%-500-3	64.26	0.4287	19.13	2.67

Table S1. Physical and chemical properties of as-prepared samples.

Peak no. **Compound Structure** Peak no. **Compound Structure** 8 1 O_2N Сн H O_2N 9 2 O_2N -CH₃ он O_2N 3 10 OH HO H Cl H₂ -Cl H Cl 4 11 -CH₃ O_2N O_2N NH2 ÓН **5(CAP)** QН OH 12 CH2 O_2N O2 2 CI H CI Н 13 6 O_2N CH2 CH2 2 CI H CI HN óн 7 O₂N-H но́ он

Figure S1. (a) XRD patterns of as-prepared samples under different weight percentage.(b) enlarged view. (Reaction conditions: sintering temp = 500°C, time = 2 h)

Figure S2. XRD patterns of as-prepared samples under different sintering temperature. (Reaction conditions: 4wt%, time = 2 h)

Figure S3. XRD patterns of (a) SrCO₃, SrFeO_{3-x}, and Fe₂O₃, as-prepared samples (b) under different weight percentage (reaction conditions: sintering temp = 500° C, time = 2 h), (c) under different teaction time (reaction conditions: sintering temp = 500° C, 4wt.%).

Figure S4. SEM images and EDS of (a) (b) $SrFeO_{3-x}$ and (b) (c) $g-C_3N_4$.

Figure S5. SEM images and EDS of $SrFeO_{3-x}/g-C_3N_4$ prepared by the sintering method at different weight percentage with $SrFeO_{3-x}$. (Sintering conditions: temp = 500°C, time = 2 h)

Figure S6. SEM images and EDS of $SrFeO_{3-x}/g-C_3N_4$ prepared by the sintering method at different weight percentage with $SrFeO_{3-x}$. (Sintering conditions: temp = 500°C, time = 2 h)

Figure S7. SEM images and EDS of $SrFeO_{3-x}/g-C_3N_4$ prepared by the sintering method at different temperature. (Sintering conditions: 4 weight percentage $SrFeO_{3-x}$, time = 2 h).

Figure S8. SEM images and EDS of $SrFeO_{3-x}/g-C_3N_4$ prepared by the sintering method at different time. (Sintering conditions: 4 weight percentage $SrFeO_{3-x}$, temp = 500°C).

Figure S9. UV-vis diffuse reflectance spectra of the $SrFeO_{3-x}/g-C_3N_4$ samples: (a) weight percentage and (b) reaction temperature.

Figure S10. UV-vis diffuse reflectance spectra of the $SrFeO_{3-x}/g-C_3N_4$ samples: (a) weight percentage and (b) reaction time.

Figure S11. N₂ adsorption-desorption isotherm distribution curves and the pore distribution curves for (a) $g-C_3N_4$, (b) $SrFeO_{3-x}$, (c) $SrFeO_{3-x}/g-C_3N_4$, and (d) xxxxx.

Figure S12. N₂ adsorption–desorption isotherm distribution curves for as-prepared SrFeO_{3-x}/g-C₃N₄, SrFeO_{3-x}, and g-C₃N₄ samples (inset: enlarged view).

Figure S13. Photocatalytic degradation of CAP as a function of irradiation time over 4wt.% SrFeO_{3-x}/g-C₃N₄ photocatalysts. (Sintering conditions: temp = 400-550°C, time = 2 h)

Figure S14. Photocatalytic degradation of CAP as a function of irradiation time over 4wt.% SrFeO_{3-x}/g-C₃N₄ photocatalysts. (Sintering conditions: temp = 500° C, time = 1-3 h)

Figure S15. Temporal concentration of Cl⁻, NO₃⁻, and NO₂⁻ ions changes during the photocatalytic degradation and photolysis of CAP over aqueous 4wt.% SrFeO_{3-x}/g-C₃N₄ under visible light irradiation.

Figure S16. ESI mass spectra of the intermediates formed during the photodegradation of the CAP after they were separated by HPLC method.