Supporting Information for

The Pore Network and the Adsorption Characteristics of Mesoporous Silica Aerogel: Adsorption Kinetics on a Timescale of Seconds

József Kalmár^a*, Mónika Kéri^b, Zsolt Erdei^c, István Bányai^b, István Lázár^c, Gábor Lente^c and István Fábián^c

^a MTA-DE Homogeneous Catalysis and Reaction Mechanisms Research Group, Egyetem tér 1, H-4032 Hungary

^b Department of Colloid and Environmental Chemistry, University of Debrecen, Egyetem tér 1, H-4032 Hungary

^c Department of Inorganic and Analytical Chemistry, University of Debrecen, Egyetem tér 1, H-4032 Hungary

* Corresponding author: e-mail: kalmar.jozsef@science.unideb.hu

Nitrogen porometry of the dry aerogel:

Quantachrome NovaWin - Data Acquisition and Reduction for NOVA instruments ©1994-2010, Quantachrome Instruments version 11.0

<u>Analysis</u> Operator:AerogelLab Sample ID: KE-10

Date:2015/03/20 Filename: Report Operator:AerogelLab C:\QCdata\Physisorb\KE-10.qps

Date:4/9/2015

Isotherm								
Relative Pressure	Volume @ STP	Relative Pressure	Volume @ STP	Relative Pressure	Volume @ STP			
	[cc/g]		[cc/g]		[cc/g]			
4.59500e 6.20900e 1.06310e 1.68750e 6.41740e 9.55050e 1.40361e 1.78347e 2.15245e 2.56026e 2.97108e 3.38220e 3.79252e 4.18275e 4.59300e 4.97409e 5.18209e 5.35200e 5.56411e 5.75577e	-03 125.1163 -02 140.3717 -02 154.7747 -02 205.5995 -02 225.9026 -01 248.1658 -01 264.7490 -01 295.6425 -01 311.1668 -01 326.1445 -01 357.1890 -01 375.3219 -01 399.5852 -01 409.2308 -01 420.0262 -01 429.9238	7.78239e- 7.95381e- 8.20460e- 8.36550e- 8.55154e- 8.75292e- 8.96115e- 9.16339e- 9.36384e- 9.54980e- 9.75976e- 9.80549e- 9.80549e- 9.85087e- 9.91000e- 9.88436e- 9.88040e- 9.88040e- 9.84035e- 9.64949e- 9.44421e- 9.24881e-	01 587.7940 01 614.0372 01 635.7924 01 664.3955 01 698.3475 01 741.5098 01 797.5208 01 1047.3297 01 1970.4994 01 3836.8341 01 4209.1974 01 4781.6923 01 4773.6272 01 4674.8408 01 4096.8807 01 3521.4295 01 3135.5462	7.24804e- 6.99596e- 6.82569e- 6.63094e- 6.43445e- 6.21781e- 6.04912e- 5.81454e- 5.60459e- 5.42287e- 5.19030e- 5.04568e- 4.23101e- 3.82637e- 3.41562e- 3.01559e- 2.59440e- 2.19063e- 1.80270e-	01 607.8998 01 584.5793 01 565.9544 01 544.7244 01 527.6891 01 512.7755 01 496.0251 01 479.5198 01 468.7991 01 452.6769 01 419.5782 01 376.0169 01 353.9203 01 353.7234 01 311.9851 01 290.5330 01 270.0771			
5.96284e 6.16134e 6.39369e 6.60126e 6.76865e 6.95454e 7.17163e 7.38864e 7.59772e	-01 452.0632 -01 464.7054 -01 478.3503 -01 490.7141 -01 502.9364 -01 519.4899 -01 533.8366	9.04325e- 8.84555e- 8.63985e- 8.44329e- 8.24141e- 8.03794e- 7.83115e- 7.64295e- 7.43235e-	01 2526.9761 01 2176.2634 01 1644.0337 01 1197.0243 01 956.3965 01 825.4082 01 746.3590	1.43502e- 1.03802e- 5.64460e- 2.31630e- 1.85460e- 1.27990e- 9.61500e-	01 223.9096 02 187.4070 02 147.9990 02 139.7889 02 127.1067			

Quantachrome NovaWin - Data Acquisition and Reduction for NOVA instruments ©1994-2010, Quantachrome Instruments version 11.0

Analysis Operator:AerogelLab Sample ID: KE-10

Date:2015/03/20 Filename: Report Operator:AerogelLab C:\QCdata\Physisorb\KE-10.qps

Date:4/9/2015

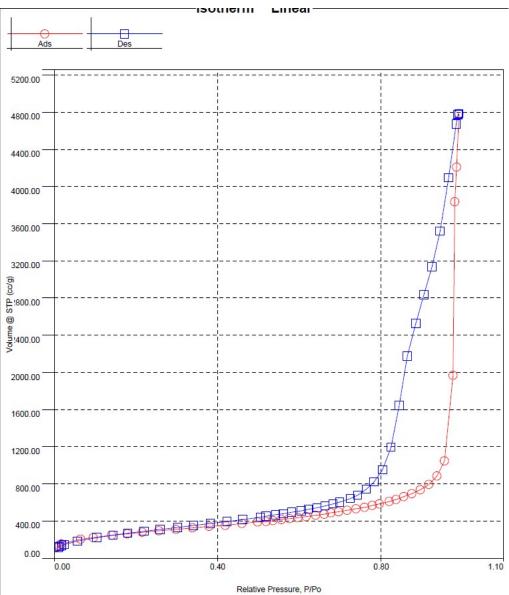
DFT method Pore Size Distribution-

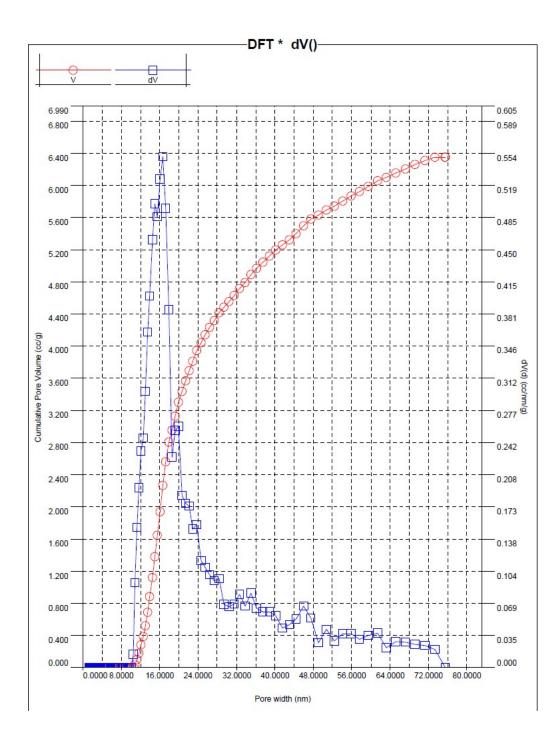
Pore width	Cumulative	Cumulative	dV(d)	dS(d)
	Pore Volume	Surface Area		uo(u)
[nm]	[cc/g]	[m./g]	[cc/nm/g]	[m /nm/g]
1.3790	0.0000e+00	0.0000e+00	0.0000e+00	0.0000e+00
1.4320	0.0000e+00	0.0000e+00	0.0000e+00	0.0000e+00
1.4980	0.0000e+00	0.0000e+00	0.0000e+00	0.0000e+00
1.5640	0.0000e+00	0.0000e+00	0.0000e+00	0.0000e+00
1.6310 1.6970	0.0000e+00 0.0000e+00	0.0000e+00 0.0000e+00	0.0000e+00 0.0000e+00	0.0000e+00 0.0000e+00
1.7800	0.0000e+00	0.0000e+00	0.0000e+00	0.0000e+00
1.8680	0.0000e+00	0.0000e+00	0.0000e+00	0.0000e+00
1.9480	0.0000e+00	0.0000e+00	0.0000e+00	0.0000e+00
2.0270	0.0000e+00	0.0000e+00	0.0000e+00	0.0000e+00
2.1070	0.0000e+00	0.0000e+00	0.0000e+00	0.0000e+00
2.1860	0.0000e+00	0.0000e+00	0.0000e+00	0.0000e+00
2.2660	0.0000e+00	0.0000e+00	0.0000e+00	0.0000e+00
2.3450	0.0000e+00	0.0000e+00	0.0000e+00	0.0000e+00
2.4250	0.0000e+00	0.0000e+00	0.0000e+00	0.0000e+00
2.5040	0.0000e+00	0.0000e+00	0.0000e+00	0.0000e+00
2.5830	0.0000e+00	0.0000e+00 0.0000e+00	0.0000e+00 0.0000e+00	0.0000e+00 0.0000e+00
2.7030 2.8220	0.0000e+00 0.0000e+00	0.0000e+00	0.0000e+00	0.0000e+00
2.9410	0.0000e+00	0.0000e+00	0.0000e+00	0.0000e+00
3.0600	0.0000e+00	0.0000e+00	0.0000e+00	0.0000e+00
3.1790	0.0000e+00	0.0000e+00	0.0000e+00	0.0000e+00
3.2980	0.0000e+00	0.0000e+00	0.0000e+00	0.0000e+00
3.4180	0.0000e+00	0.0000e+00	0.0000e+00	0.0000e+00
3.5370	0.0000e+00	0.0000e+00	0.0000e+00	0.0000e+00
3.6560	0.0000e+00	0.0000e+00	0.0000e+00	0.0000e+00
3.7750 3.9340	0.0000e+00 0.0000e+00	0.0000e+00 0.0000e+00	0.0000e+00 0.0000e+00	0.0000e+00 0.0000e+00
4.0930	0.0000e+00	0.0000e+00	0.0000e+00	0.0000e+00
4.2520	0.0000e+00	0.0000e+00	0.0000e+00	0.0000e+00
4.4110	0.0000e+00	0.0000e+00	0.0000e+00	0.0000e+00
4.5700	0.0000e+00	0.0000e+00	0.0000e+00	0.0000e+00
4.7280	0.0000e+00	0.0000e+00	0.0000e+00	0.0000e+00
4.8870	0.0000e+00	0.0000e+00	0.0000e+00	0.0000e+00
5.0860	0.0000e+00	0.0000e+00	0.0000e+00	0.0000e+00
5.2850	0.0000e+00	0.0000e+00	0.0000e+00	0.0000e+00
5.4830 5.6820	0.0000e+00 0.0000e+00	0.0000e+00 0.0000e+00	0.0000e+00 0.0000e+00	0.0000e+00 0.0000e+00
5.8800	0.0000e+00	0.0000e+00	0.0000e+00	0.0000e+00
6.0790	0.0000e+00	0.0000e+00	0.0000e+00	0.0000e+00
6.3170	0.0000e+00	0.0000e+00	0.0000e+00	0.0000e+00
6.5560	0.0000e+00	0.0000e+00	0.0000e+00	0.0000e+00
6.7940	0.0000e+00	0.0000e+00	0.0000e+00	0.0000e+00
7.0320	0.0000e+00	0.0000e+00	0.0000e+00	0.0000e+00
7.3100 7.5880	0.0000e+00 0.0000e+00	0.0000e+00 0.0000e+00	0.0000e+00 0.0000e+00	0.0000e+00 0.0000e+00
7.8670	0.0000e+00	0.0000e+00	0.0000e+00	0.0000e+00
8.1450	0.0000e+00	0.0000e+00	0.0000e+00	0.0000e+00
8.4620	0.0000e+00	0.0000e+00	0.0000e+00	0.0000e+00
8.7800	0.0000e+00	0.0000e+00	0.0000e+00	0.0000e+00
9.0980	0.0000e+00	0.0000e+00	0.0000e+00	0.0000e+00
9.4160	0.0000e+00	0.0000e+00	0.0000e+00	0.0000e+00
9.7730	0.0000e+00	0.0000e+00	0.0000e+00	0.0000e+00
10.1310 10.4880	0.0000e+00 4.9846e-03	0.0000e+00	0.0000e+00 1.3962e-02	0.0000e+00
10.8850	4.9846e-03 4.1399e-02	1.9011e+00 1.5282e+01	9.1723e-02	5.3251e+00 3.3706e+01
11.2830	1.0154e-01	3.6605e+01	1.5112e-01	5.3573e+01
11.6800	1.7862e-01	6.3002e+01	1.9416e-01	6.6493e+01
	(Continued on next page		

Quantachrome NovaWin - Data Acquisition and Reduction for NOVA instruments

©1994-2010, Quantachrome Instruments

version 11.0


Analysis					
Operator:AerogelLab					
Sample ID: KE-10					


Date:2015/03/20 Filename: Report Operator:AerogelLab C:\QCdata\Physisorb\KE-10.qps

Date:4/9/2015

-DFT method Pore Size Distribution continued

Pore width [nm]	Cumulative Pore Volume [cc/g]	Cumulative Surface Area [m./g]	dV(d) [cc/nm/g]	dS(d) [m./nm/g]
	0.000504		0.0047.04	
12.1170	2.8065e-01	9.6683e+01	2.3347e-01	7.7073e+01
12.5540	3.8858e-01	1.3107e+02	2.4697e-01	7.8691e+01
12.9910	5.1864e-01	1.7112e+02	2.9763e-01	9.1641e+01
13.4670	6.9061e-01	2.2220e+02	3.6128e-01	1.0731e+02
13.9440 14.4600	8.8158e-01	2.7698e+02	4.0035e-01	1.1485e+02 1.2752e+02
	1.1194e+00	3.4278e+02	4.6097e-01	1.3346e+02
14.9770 15.5330	1.3778e+00	4.1177e+02 4.8131e+02	4.9970e-01	1.2506e+02
16.0890	1.6478e+00 1.9404e+00	5.5406e+02	4.8562e-01 5.2633e-01	1.3086e+02
16.6850	2.2682e+00	6.3264e+02	5.4995e-01	1.3184e+02
17.2810	2.5629e+00	7.0086e+02	4.9450e-01	1.1446e+02
17.9160	2.8079e+00	7.5556e+02	3.8583e-01	8.6142e+01
18.5520	2.9521e+00	7.8664e+02	2.2663e-01	4.8865e+01
19.2270	3.1246e+00	8.2253e+02	2.5563e-01	5.3181e+01
19.9020	3.2999e+00	8.5777e+02	2.5969e-01	5.2194e+01
20.6170	3.4323e+00	8.8345e+02	1.8519e-01	3.5930e+01
21.3720	3.5658e+00	9.0844e+02	1.7680e-01	3.3090e+01
22.1270	3.6971e+00	9.3216e+02	1.7385e-01	3.1427e+01
22.9210	3.8156e+00	9.5285e+02	1.4930e-01	2.6055e+01
23.7550	3.9438e+00	9.7444e+02	1.5371e-01	2.5883e+01
24.6290	4.0444e+00	9.9078e+02	1.1512e-01	1.8697e+01
25.5030	4.1390e+00	1.0056e+03	1.0826e-01	1.6980e+01
26.4170	4.2305e+00	1.0195e+03	1.0005e-01	1.5149e+01
27.3700	4.3193e+00	1.0325e+03	9.3257e-02	1.3629e+01
28.3630	4.4144e+00	1.0459e+03	9.5769e-02	1.3506e+01
29.3960	4.4849e+00	1.0555e+03	6.8214e-02	9.2822e+00
30.4680	4.5555e+00	1.0647e+03	6.5840e-02	8.6438e+00
31.5410	4.6294e+00	1.0741e+03	6.8913e-02	8.7395e+00
32.6530	4.7172e+00	1.0848e+03	7.8883e-02	9.6632e+00
33.8050	4.7934e+00	1.0939e+03	6.6182e-02	7.8309e+00
34.9970	4.8891e+00	1.1048e+03	8.0258e-02	9.1732e+00
36.2280	4.9675e+00	1.1135e+03	6.3751e-02	7.0388e+00
37.4990 38.8100	5.0438e+00 5.1226e+00	1.1216e+03 1.1297e+03	5.9966e-02 6.0104e-02	6.3965e+00 6.1947e+00
40.1600	5.1983e+00	1.1373e+03	5.6144e-02	5.5920e+00
41.5510	5.2574e+00	1.1429e+03	4.2453e-02	4.0869e+00
42.9810	5.3235e+00	1.1491e+03	4.6199e-02	4.2995e+00
44.4500	5.4004e+00	1.1560e+03	5.2395e-02	4.7149e+00
45.9600	5.5008e+00	1.1648e+03	6.6483e-02	5.7862e+00
47.5090	5.5839e+00	1.1718e+03	5.3616e-02	4.5142e+00
49.0980	5.6271e+00	1.1753e+03	2.7204e-02	2.2163e+00
50.7270	5.6948e+00	1.1806e+03	4.1562e-02	3.2773e+00
52.3950	5.7430e+00	1.1843e+03	2.8884e-02	2.2050e+00
54.1030	5.8056e+00	1.1889e+03	3.6682e-02	2.7121e+00
55.8510	5.8696e+00	1.1935e+03	3.6598e-02	2.6212e+00
57.6380	5.9240e+00	1.1973e+03	3.0430e-02	2.1117e+00
59.4650	5.9878e+00	1.2016e+03	3.4949e-02	2.3509e+00
61.3320	6.0570e+00	1.2061e+03	3.7031e-02	2.4151e+00
63.2390	6.0979e+00	1.2087e+03	2.1450e-02	1.3568e+00
65.1850	6.1523e+00	1.2120e+03	2.7950e-02	1.7151e+00
67.1710 69.1970	6.2065e+00 6.2578e+00	1.2152e+03 1.2182e+03	2.7326e-02 2.5277e-02	1.6273e+00 1.4612e+00
71.2630	6.3072e+00	1.2210e+03	2.3947e-02	1.3441e+00
73.3680	6.3480e+00	1.2232e+03	1.9380e-02	1.0566e+00
75.5130	6.3480e+00	1.2232e+03	0.0000e+00	0.0000e+00
75.5155	0.04000100	1.22020100	0.00000100	0.00000100

Infrared spectroscopy:

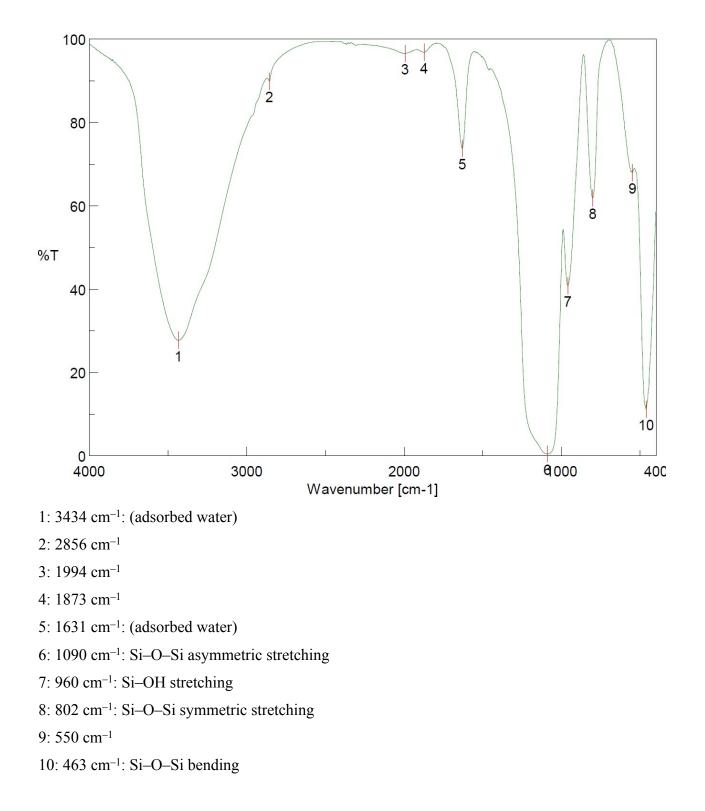


Figure S1. Transmission IR spectrum of the calcined silica aerogel.

Microscopy of the aerogel suspension:

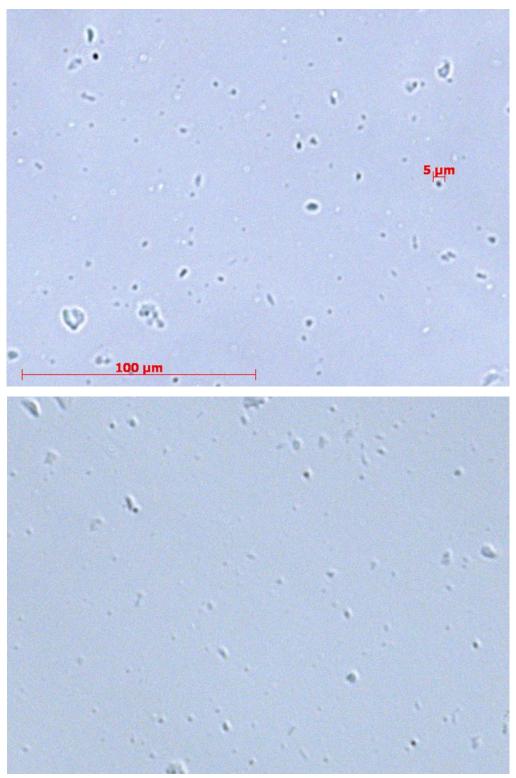
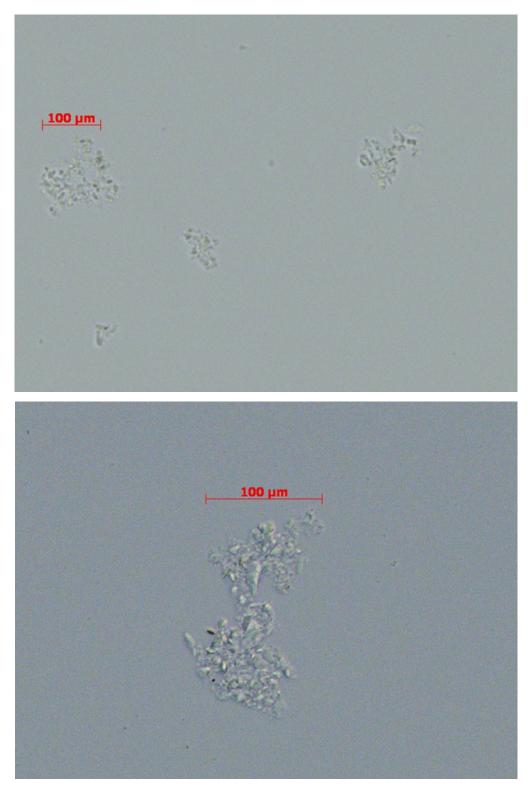


Figure S2A. Micrograph of a fresh aerogel suspension. Small, homogeneous particles (5 – 10 $\mu M)$ dominate.



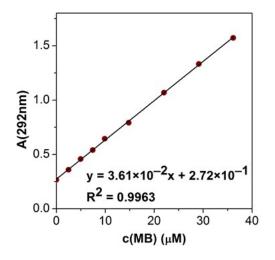

Figure S2B. Micrograph of a 2 h aerogel suspension. Small aerogel particles spontaneously aggregate to larger $(20 - 100 \ \mu M)$ blocks.

Figure S3. NMR diffusiometry: self-diffusion of water in suspended aerogel. Experimental curves (upper left corner), and inverse Laplace transformation and single exponential fitting of these curves. Up: $\Delta = 16$ ms, $\delta = 4.0$ ms. Down: $\Delta = 150$ ms, $\delta = 1.6$ ms.

The validity of Beer's law in the aerogel suspension:

Figure S4. Absorbance versus concentration plot of methylene blue (MB) added to an aerogel suspension. The intercept is due to the light scattering of the suspension. $c(gel) = 338 \ \mu g/mL$; $c(NaH_2PO_4+Na_2HPO_4) = 50 \ mM$; pH = 6.91; 25 °C; 1000 rpm stirring.

The Langmuir isotherm:

The following equations describe the adsorption equilibrium and account for the mass balances in the Langmuir model:

$$\mathbf{MB} + \mathbf{S} \longrightarrow \mathbf{SMB}$$
(4)

$$K_{ads} = \frac{\theta_{SMB}}{[MB]\theta_S} \qquad c_{MB} = [MB] + c_{gel}s\theta_{SMB} \qquad 1 = \theta_S + \theta_{SMB} \tag{5}$$

where MB is hydrated methylene blue, S represents an unoccupied adsorption site and SMB is the adsorbed dye occupying a site. K_{ads} is the equilibrium constant of monolayer adsorption. The

- S11 -

total concentration of MB is c_{MB} . The total concentration of the aerogel is c_{gel} in g/L units. The number of adsorption sites on the aerogel particles is *s* in mol/g units. Thus, *s* represents the adsorptive capacity of the aerogel. θ_{S} and θ_{SMB} represent the surface coverage of free and occupied sites, respectively. Square brackets denote equilibrium concentrations. ([MB] is the concentration of hydrated MB in the adsorption equilibrium.) The adsorbed amount of MB can be easily expressed from eq. 5:

 $[MB]_{ads} = c_{gel} s \theta_{SMB}$ and $[MB] = c_{MB} - c_{gel} s \theta_{SMB}$

Inserting this expression to K_{ads} in eq. 5 yields:

$$K_{ads} = \frac{\theta_{SMB}}{(c_{MB} - c_{gel} s \,\theta_{SMB})(1 - \theta_{SMB})}$$

By solving the above second order mathematical equation to give θ_{SMB} , the absorbed amount of MB can be expressed as the function of c_{MB} and c_{gel} :

$$[MB]_{ads} = c_{gel}s\theta_{SMB} = \frac{1}{2} \left\{ \left(c_{gel}s + c_{MB} + \frac{1}{K_{ads}} \right) - \sqrt{\left(c_{gel}s + c_{MB} + \frac{1}{K_{ads}} \right)^2 - 4c_{MB}c_{gel}s} \right\}$$

In the case, if $c_{\rm MB} >> [\rm MB]_{ads}$:

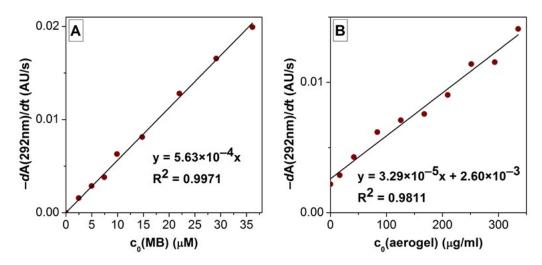
$$K_{ads} = \frac{\theta_{SMB}}{c_{MB} (1 - \theta_{SMB})}$$

and

$$[MB]_{ads} = c_{gel} s \theta_{SMB} = \frac{K_{ads} c_{MB} c_{gel} s}{1 + K_{ads} c_{MB}}$$

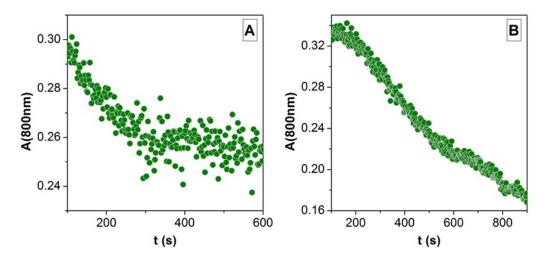
The absorbance of the solution decreases because some dissolved MB is removed by the aerogel. Using Lambert-Beer's law:

– S12 –


$$\Delta A = \varepsilon l[MB]_{ads} = \varepsilon lc_{gel} s \,\theta_{SMB}$$

The absorbance change due to the depletion of dissolved MB is ΔA . The molar absorbance of MB at 292 nm is ε and the optical path length of the cuvette is *l*:

 $=\varepsilon lc_{gel}s\theta_{SMB} = \frac{\varepsilon l}{2} \left\{ \left(c_{gel}s + c_{MB} + \frac{1}{K_{ads}} \right) - \sqrt{\left(c_{gel}s + c_{MB} + \frac{1}{K_{ads}} \right)^2 - 4c_M} \right\}$ (6)


Kinetics of the adsorption of MB on aerogel particles:

 ΔA

Figure S5. Dependence of the initial rate of adsorption on the initial concentration of MB (A) and on the initial concentration of the aerogel in suspension (B). Dots are experimental data points. Continuous lines are the results of linear data fitting. $c(NaH_2PO_4+Na_2HPO_4) = 50 \text{ mM}$; pH = 6.93 (A), 6.91 (B); 25 °C; 1000 rpm stirring.

Aggregation of aerogel particles following the adsorption of MB:

Figure S6. The aggregation of aerogel particles following the adsorption of MB. The absorbance decreases because the light scattering of the particles decreases. Methylene blue does not absorb at 800 nm. A: Aged aerogel suspension: $c(gel) = 340 \ \mu g/mL$; $c(MB) = 22.0 \ \mu M$. B: Fresh aerogel suspension: $c(gel) = 341 \ \mu g/mL$; $c(MB) = 45.3 \ \mu M$. $c(NaH_2PO_4+Na_2HPO_4) = 50 \ mM$; pH = 6.93 (A), 6.96 (B); 25 °C; 1000 rpm stirring.