Electronic Supplementary Information of

Hybrids based on transition metal phosphide (Mn₂P, Co₂P, Ni₂P) nanoparticles and heteroatom-doped carbon nanotubes for efficient oxygen reduction reaction

Kuiyong Chen,^{a,b} Xiaobin Huang, ^{a*} Chaoying Wan,^c and Hong Liu^a

^a School of Aeronautics and Astronautics, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P R China.

^b School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P R China.

^c International Institute for Nanocomposites Manufacturing, WMG, University of Warwick, Coventry, UK, CV4 7AL

*Corresponding author. Fax: +86-21-54741297; Tel: +86-21-54743264; E-mail address: xbhuang@sjtu.edu.cn.

Koutechy_Levich equation:

$$\frac{1}{J} = \frac{1}{J_K} + \frac{1}{B\omega^{0.5}}$$
(i)
 J_k represents the kinetic current and ω is the electrode rotating rate (rpm).

$$B = 0.2 \text{m}E(D_{\rm c})^{3/2} = 1/6C$$

$$B = 0.2nF(D_{0_2})^{3/2}v^{-1/3}C_{0_2}$$

B could be determined from the slope of K-L plots by equation (i), F is the Faraday constant (F = 96485 C/mol), D_{O2} represents the diffusion coefficient of O_2 in 0.1 M KOH (1.9×10^{-5} cm²/s), v is the kinetic viscosity (0.01 cm²/s), and C_{O2} represents the bulk concentration of O_2 (1.2×10^{-6} mol/cm³). n is the transferred electron transfer number per oxygen molecule, and could be calculated via equation (i) and (ii).

(ii)

Fig. S1TEM images of CNTs@PPA with different PPA contents. (a) m_{cnts} : m_{HCCP} : m_{p-PDA} =4:1:1, (b) m_{CNTs}: m_{HCCP}: m_{p-PDA}=1:1:1

显微镜 加速电压放大倍率相机长度 采集日期 JEM-2100 200 kV 40000 x - 15/05/11, 16:04 -100 nm-

Fig. S2 TEM images of pristine MWCNTs load with cobalt compound carbonized at 900 °C.

Fig. S3 Raman spectra of (a) HCNTs, (b) HCNTs-Co₂P, (c) HCNTs-Mn₂P and (d) HCNTs-Ni₂P

Fig. S4 Nitrogen adsorption–desorption isotherms of HCNTs- $Co_2P(a)$, HCNTs- $Mn_2P(c)$ and HCNTs- $Ni_2P(e)$, and their corresponding pore size distribution (b, d, f)

Fig. S5 Wide survey XPS spectra of the samples

Fig. S6 Metal-mass-specific linear sweep voltammograms of HCNTs– Co_2P (1), HCNTs– Mn_2P (2), HCNTs– Ni_2P (3) at a rotation rate of 1800 rpm in O_2 –saturated 0.1 M KOH solution. The metal mass was estimated based on the XPS results.

Fig. S7 Linear sweep voltammograms (LSVs) curves of HCNTs-Co₂P (a), HCNTs-Mn₂P (c) and HCNTs-Ni₂P (e) at various rotating rates in O₂ saturated 0.1 M KOH and the corresponding Kouteckye-Levich plots recorded at selected potentials (b, d, f)

Fig. S8 (a) LSVs curves of HCNTs at various rotating rates in O₂ saturated 0.1 M KOH and (b) the corresponding Kouteckye-Levich plots recorded at selected potentials