Supplementary Information

Dibenzo[a,c]phenazine-derived near-infrared fluorescence biosensor

for detection of lysophosphatidic acid based on the aggregation-

induced emission

Tao Jiang, Niannian Lu, Ji Yang, Yandi Hang, Jian Wang, Ping Zhao^{*} and Jianli Hua^{*} Key Laboratory for Advanced Materials, Institute of Fine Chemicals, East China University of Science and Technology, 200237, Shanghai, China.

Contents list:

- **S1.** Materials and Measurements
- S2. Quantification of LPA in the fetal bovine serum (FBS)
- S3. Fluorescence spectra of TDBP in DMSO/H₂O mixtures.
- S4. The fluorescence spectra of TDBP (100 μ M) to LPA (100 μ M) in the presence of various proteins and miscellaneous interference cations and anions (100 μ M). λ_{ex} : 530 nm.
- S5. Change in fluorescence ratio (F/F_{LPA}) of TDBP (100 μ M) upon addition of 1 equiv. amounts of LPA in the presence of other interfere substrates (1 equiv.) in DMSO/H₂O mixtures (1/1, v/v). F/F_{LPA} represents the fluorescence intensity ratio of other interfere substrates (F) and LPA (F_{LPA}). λ_{ex} : 530 nm.
- **S6.** Characterization
- **S7. References**

S1. Materials and Measurements

N, *N*-dimethylformamide (DMF) was refluxed with calcium hydride and distilled before use. Tetrahydrofuran (THF) was pre-dried over 4 A^{\circ} molecular sieves and distilled under an N₂ atmosphere from sodium benzophenone ketyl immediately before use. 3, 6-dibromobenzene-1,2-diamine (compound 1)¹ and (4-(bis(4-methoxyphenyl)amino)phenyl)boronic acid² were prepared according to the previous published literatures. All others chemicals were purchased from commercial sources and used without further purification. Lysophosphatidic acid (LPA) was purchased from the aladdin. The solutions for analytical studies were prepared with deionized water treated with a Milli-Q System (Billerica, MA, USA).

¹ H NMR and ¹³ C NMR spectra were recorded on a Bruker AM 400MHz spectrometer with tetramethyl silane (TMS) as the internal reference. Electrospray ionization and time-of-flight analyzer (ESI-TOF) mass spectra were carried out on a Waters Micromass LCT mass spectrometer. Absorption spectra were measured with a Varian Cary 500 UV-Vis spectraphotometer. Fluorescence spectra were measured with a Horiba scientific FluoroMax-4 spectrofluorometer. The SEM micrographs were recorded with a JEOL JSM-6360 scanning electron microscope (SEM). Zeta potentials were recorded on Zeta-size 3000 HS.

Scheme S1. Synthetic route of the compound TDBP.

Synthesis of 2. In a 100 mL two-necked round-bottom flask, compound 1 (2.26 g, 8.5 mmol) and phenanthrene-9,10-dione (1.76 g, 8.5 mmol) were dissolved in 25 mL acetic acid under N₂ atmosphere and refluxed for 12 h. Upon cooling, the mixture solution was concentrated using a rotary evaporator and the obtained product was washed by the DCM for three times to afford the pure compound 2 (2.41 g, 65%). ¹H NMR (CDCl₃, 400 MHz, TMS), δ : 9.48 (d, *J* = 9.0 Hz, 2H), 8.58 (d, *J* = 8.0 Hz, 2H), 8.03 (s, 2H), 7.85 (t, *J* = 8.2 Hz, 2H), 7.79 (t, *J* = 7.2 Hz, 2H).

Synthesis of 3. In a 50 mL two-necked round-bottom flask, compound 2 (435.9 mg, 1 mmol) and Pd(PPh₃)₄ (30.0 mg, 0.026 mmol) were dissolved in 15 mL THF under N₂ atmosphere, and then added 5 mL 2 M potassium carbonate aqueous solution to the mixture. After stirring for 30 min at 50 °C, (4-(bis(4-methoxyphenyl)amino)phenyl)boronic acid (433.2 mg, 1 mmol) dissolved in 10 mL THF was dropwise added into the mixture and stirred for another 5 h. Upon cooling, the mixture was poured into saturated brine and extracted with DCM (50 mL ×3). The combined organic layer was dried over anhydrous MgSO₄ and concentrated using a rotary evaporator. The residue was purified by column chromatography on silica (PE/DCM = 4/1–2/1, v/v) to afford the product as a yellow solid (211.6 mg, 32%). ¹H NMR (CDCl₃, 400 MHz, TMS), δ : 9.53 (d, *J* = 7.5Hz, 1H), 9.14 (d, *J* = 8.4 Hz, 1H), 8.57 (s, 2H), 8.21 (s, 1H), 7.86 – 7.64 (m, 7H), 7.22 (d, *J* = 8.9 Hz, 4H), 7.15 (d, *J* = 8.6 Hz, 2H), 6.91 (d, *J* = 8.9 Hz, 4H), 3.84 (s, 6H). ¹³C NMR (CDCl₃, 100 MHz, TMS), δ : 156.06, 148.57, 142.07, 141.96, 140.82, 140.44, 140.13, 139.67, 132.94, 132.24, 132.20, 131.75, 130.62, 130.38, 130.05, 129.93, 129.59, 128.96, 128.06, 127.98, 126.93, 126.80, 122.85, 122.81, 122.45, 119.57, 114.77, 55.55. HRMS (ESI) (m/z): [(M+H)⁺] calcd for C₄₀H₂₈BrN₃O₂, 662.1443, found: 662.1438.

Synthesis of 4. In a 50 mL two-necked round-bottom flask, compound 3 (99.2 mg, 0.15 mmol) and Pd(PPh₃)₄ (30.0 mg, 0.026 mmol) were dissolved in 20 mL DMF under N₂ atmosphere, and then added 5 mL 2 M potassium carbonate aqueous solution to the mixture. After stirring for 30 min at 60 °C, pyridin-4-ylboronic acid (61.5 mg, 0.5 mmol) dissolved in 5 mL H₂O was dropwise added into the mixture and refluxed for another 10 h. Upon cooling, the mixture was poured into saturated brine and extracted with DCM (50 mL \times 3). The combined organic layer was washed five times by the water and then dried over anhydrous $MgSO_4$ and concentrated using a rotary evaporator. The residue was purified by column chromatography on silica (DCM/Ethanol = 40/1-20/1, v/v) to afford the product as a red solid (67.4 mg, 68%). ¹H NMR (CDCl₃, 400 MHz, TMS), δ : 9.17 (d, J = 8.0Hz, 1H), 9.08 (d, *J* = 9.2 Hz, 1H), 8.85 (d, *J* = 6.0 Hz, 2H), 8.56 (d, *J* = 8.0 Hz, 2H), 8.00 (s, 2H), 7.92 (d, J = 6.0 Hz, 2H), 7.86 (d, J = 8.7 Hz, 2H), 7.79 (t, J = 8.2 Hz, 2H), 7.70 (t, J = 7.8 Hz, 2H),7.24 (d, J = 9.0 Hz, 4H), 7.18 (d, J = 8.7 Hz, 2H), 6.92 (d, J = 9.0 Hz, 4H), 3.84 (s, 6H). ¹³C NMR (CDCl₃, 100MHz, TMS), δ: 156.10, 149.25, 148.65, 146.80, 141.46, 141.38, 141.10, 140.79, 139.87, 139.64, 135.74, 132.22, 132.15, 132.12, 132.05, 131.87, 130.36, 130.26, 130.19, 130.04, 129.82, 128.59, 128.47, 128.04, 127.99, 127.00, 126.59, 126.39, 125.91, 122.86, 119.44, 114.80, 55.55. HRMS (ESI) (m/z): [(M+H)⁺] calcd for C₄₅H₃₂N₄O₂, 661.2604, found: 661.2600.

Synthesis of TDBP. In a 50 mL two-necked round-bottom flask, compound **7** (330.1 mg, 0.5 mmol) and 1-bromohexadecane (456.3 mg, 1.5 mmol) were dissolved in 20 mL THF under N₂ atmosphere and then stirred at 70 °C for 72 hours. Upon cooling, the mixture was poured into saturated brine and extracted with DCM (30 mL × 3). The combined organic layer was dried over anhydrous MgSO₄ and concentrated using a rotary evaporator. The residue was purified by column chromatography on silica (DCM/Ethanol = 10/1, v/v) to afford the product as a purple solid (106.1 mg, 22%). ¹H NMR (CDCl₃, 400 MHz, TMS), δ : 9.57 (d, *J* = 5.5 Hz, 2H), 8.60 (d, *J* = 8.0 Hz, 1H), 8.52 (d, *J* = 5.5 Hz, 2H), 8.43 (d, *J* = 8.2 Hz, 1H), 8.09 – 7.91 (m, 3H), 7.64 (dd, *J* = 16.8, 7.5 Hz, 3H), 7.52 – 7.36 (m, 4H), 7.12 (d, *J* = 8.9 Hz, 4H), 6.98 (d, *J* = 8.6 Hz, 2H), 6.87 (d, *J* = 9.0 Hz, 4H), 5.14 (*J* = 4.8 Hz, 2H), 3.83 (s, 6H), 2.16 – 2.04 (m, 2H), 1.28 – 1.15 (m, 26H), 0.85 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (CDCl₃, 100 MHz, TMS), δ : 155.10, 152.28, 147.57, 143.03, 142.16, 139.55, 139.29, 137.22, 136.92, 130.76, 130.52, 130.16, 128.09, 127.83, 127.62, 127.33, 127.10, 126.02, 121.09, 117.32, 113.74, 54.48, 45.00, 31.30, 30.89, 28.70, 28.64, 28.56, 28.34, 25.30, 21.66, 13.11, 7.68. HRMS (ESI) (m/z): [(M-Br)⁺] calcd for C₆₁H₆₅N₄O₂, 885.5102, found: 885.5103.

S2. Quantification of LPA in the fetal bovine serum (FBS)

For the quantification measurements, a stock solution $(1 \times 10^{-3} \text{ M})$ of probe **TDBP** was prepared by dissolving 4.82 mg of **TDBP** into 5 mL of DMSO. A stock solution $(1 \times 10^{-3} \text{ M})$ of LPA was dissolved in the pure HEPES buffer solution and fetal bovine serum solution for the spiked and recovered concentration of LPA, respectively. All the measurements were conducted in the DMSO/water (1/1, v/v) solution at the concentration of 100 µM of **TDBP**. Fetal bovine serum was added saturated ammonium sulfate to remove protein by salting out effect and centrifugal operation prior to use.

Fig. S1 (A) Fluorescence emission spectra of **TDBP** in DMSO and DMSO/water mixtures with different water fractions (f_w). (B) Plots of relative emission intensity (I/I₀) versus the composition of the DMSO/water mixtures of **TDBP**; I₀ = emission intensity in pure DMSO solution. Solution concentration: 1×10^{-4} M; λ_{ex} : 530 nm.

Fig. S2. The fluorescence spectra of **TDBP** (100 μ M) to LPA (100 μ M) in the presence of various proteins and miscellaneous interference cations and anions (100 μ M), λ_{ex} : 530 nm.

Fig. S3 Change in fluorescence ratio (F/F_{LPA}) of **TDBP** (100 μ M) upon addition of 1 equiv. amounts of LPA in the presence of other interfere substrates (1 equiv.) in DMSO/H₂O mixtures (1/1, v/v). F/F_{LPA} represents the fluorescence intensity ratio of other interfere substrates (F) and LPA (F_{LPA}), λ_{ex} : 530 nm.

S6. Characterization

¹H NMR of compound 3

High-Res ESI-TOF mass spectrum of compound 3

High-Res ESI-TOF mass spectrum of compound 4

¹H NMR of compound TDBP

High-Res ESI-TOF mass spectrum of compound TDBP

Elemental Composition Report								Page 1
Single Ma Tolerance = Element pro Number of	ss Analysis 50.0 PPM / D ediction: Off isotope peaks use	BE: min = - ⁻ ed for i-FIT :	1.5, max = = 2	100.0				
Monoisotopie 4 formula(e) Elements Us	c Mass, Even Elect evaluated with 1 re ed:	ron lons sults within li	mits (up to	1 closest res	ults for each r	nass)		
JL-HUA	IUA ECUST institute of Fine Chem							23-Jun-2015
HL-JT-303 220 (1.464) Cm (220:225) 1:								13:15:12 1: TOF MS ES+ 2 11e+003
100-							88	5.5103
] ~_								886.5132
] 865.60	59				877.4404 8	78.4407		887.5154
ماربر. 866	5.0 868.0	870.0 8	72.0 87	4.0 876	0 878.0	880.0 8	82.0 884.0	886.0 888.0 m/z
Minimum: Maximum:		300.0	50.0	-1.5 100.0				
Mass	Calc. Mass	mDa	PPM	DBE	i-FIT	i-FIT (Nor	rm) Formula	
885.5103	885.5102	-0.5	-0.6	31.5	9.3	0.0	C61 H65 N	14 02

S7. References

- H. N. Tsao, C. Yi, T. Moehl, J. H. Yum, S. M. Zakeeruddin, M. K. Nazeeruddin and M. Gräzel, *ChemSusChem*, 2011, 4, 591.
- 2. Y. D. Hang, X. P. He, L. Yang and J. L. Hua, Biosens. Bioelectron, 2015, 65, 420.