Journal Name

ARTICLE

Electronic supplementary information (ESI)

Synthesis, crystal structure and magnetic properties of the complex [ReCl_{3} (tppz)] $\cdot \mathrm{MeCN}$

${ }^{\text {a }}$ Department of Crystallography, Institute of Chemistry, University of Silesia, 9th Szkolna St., 40-006 Katowice, Poland.
E-mail: basia@ich.us.edu.pl
${ }^{\text {b }}$ Departament de Química Inorgànica/Instituto de Ciencia Molecular (ICMol), Facultat de Química de la Universitat de València, C/ Catedrático José Beltrán 2, 46980 Paterna, València, Spain. E-mail: miguel.julve@uv.es

Contents

Table S1. Selected magneto-structural data for six-coordinate rhenium(III) complexes.
Figure S1. IR spectrum of 1.
Figure S2. The X-Ray powder diffraction pattern of compound 1 (experimental - black) and the simulation of the powder pattern of 1 from the crystal structure (red).

Figure S3. ${ }^{1} \mathrm{H}(\mathrm{a})$ and ${ }^{13} \mathrm{C}$ NMR (b) spectra of compound 1.
Appendix. Energy levels for a ${ }^{3} \mathrm{~T}_{1}$ term arising from the $\mathrm{t}_{2}{ }^{4}$ electronic configuration under a tetragonal ligand-field and spin-orbit coupling.

Table S1. Selected magneto-structural data for six-coordinate rhenium(III) complexes ${ }^{\text {a }}$

$\left[\operatorname{ReX}_{3} \mathrm{~L}_{3}\right]^{\text {b }}$	Re-X	Re-N	Configuration of halide anions	Magnetic properties	Ref.
$\left[\mathrm{ReCl}_{3}(\mathrm{py})_{3}\right]$	2.367(2)	2.117(8)	mer	c	14b
	2.367(2)	2.120 (8)			
	2.397(2)	$2.116(5)$			
$\left[\mathrm{ReBr}_{3}(\mathrm{py})_{3}\right]$	2.513(2)	2.111(10)	mer	c	14b
	$2.506(2)$	2.122(10)			
	2.534(2)	2.121(9)			
$\left[\mathrm{ReCl}_{3}(\mathrm{Hpz})_{3}\right]$	2.3220(18)	2.133 (5)	mer	1.8 BM	14j
	2.3101(18)	2.095 (5)			
	2.3120 (18)	2.093(5)			
$\left[\mathrm{ReCl}_{3}(3,5-\mathrm{lut})_{3}\right]$	$2.356(4)$	2.13(1)	mer	c	14d
	2.3624)	2.13(1)			
	$2.402(4)$	2.12(1)			
[$\left.\operatorname{ReCl}_{3}\left(\mathrm{~L}^{1} \mathrm{Et}\right)\right]$	2.384(3)	2.075(9)	$f a c$	paramegnetic	14h
	2.384(3)	2.075(9)			
	$2.391(4)$	2.154(14)			
[$\left.\mathrm{ReCl}_{3}\left(\mathrm{~L}^{4} \mathrm{Et}\right)\right]$	2.3741 (17)	2.078(6)	$f a c$	c	14h
	$2.3996(16)$	2.084(5)			
	2.4040 (17)	$2.209(5)$			

${ }^{\text {a }}$ Only six-coordinate Re (III) complexes with a $\mathrm{ReN}_{3} \mathrm{Cl}_{3}$ chromophore were considered.
${ }^{\mathrm{b}}$ Abbreviation for the ligands: py $=$ pyridine, $\mathrm{Hpz}=$ pyrazole, 3,5-lut $=3,5$-dimethylpyridine, $\mathrm{L}^{1} \mathrm{Et}=(2-$ $\left.\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{NCH}_{2}\right)_{2} \mathrm{NCH}_{2} \mathrm{CO}_{2} \mathrm{C}_{2} \mathrm{H}_{5}, \mathrm{~L}^{4} \mathrm{Et}=\left(2-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{NCH}_{2}\right) \mathrm{N}^{\left(\mathrm{CH}_{3} \mathrm{C}_{3} \mathrm{H}_{2} \mathrm{~N}_{2} \mathrm{CH}_{2}\right)\left(\mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{C}_{2} \mathrm{H}_{5}\right) \text {. } . ~ . ~ . ~}$
${ }^{\mathrm{c}}$ Not measured.

Figure S1. IR spectrum of 1.

Figure S2. X-ray powder diffraction pattern of 1: (black) experimental; (red) simulation of the powder pattern from the crystal structure.

Figure S3. ${ }^{1} \mathrm{H}$ (a) and ${ }^{13} \mathrm{C}$ NMR (b) spectra of compound 1.

Appendix: Energy levels for $a^{3} T_{1}$ term arising from the $t_{2}{ }^{4}$ electronic configuration under a tetragonal ligand-

field and spin-orbit coupling

In order to simplify the calculations, we take advantage of the isomorphism between the orbital triplet ${ }^{3} T_{1}$ coming from the $t_{2}{ }^{4}$ electronic configuration and the triplet $L=1$ from a ${ }^{3} P$ term (p^{4} electronic configuration). The matrix elements of \boldsymbol{L} within the orbital triplet T_{1} are exactly the same than those contained in the matrix of $(-1) \boldsymbol{L}$ in the associated P state (strong ligand-field approach). So, we can use the $\left\|\boldsymbol{T}_{\mathbf{1}}\right\|=-\kappa\|P\|$ relationship where κ is the orbital reduction factor due to the covalency effects. ${ }^{19}$ In this respect, the wave-functions for the ${ }^{3} T_{1}$ term are written in the form of $\mid M_{L}, M_{S}>$ with $M_{L}=0, \pm 1$ and $M_{S}=0, \pm 1$. The tetragonal distortion and spin-orbit coupling are treated simultaneously through the Hamiltonian of eqn (1)

$$
\begin{equation*}
\hat{H}=-\kappa \lambda \hat{L} \hat{S}+\Delta\left(\hat{L}_{z}^{2}-2 / 3\right) \tag{1}
\end{equation*}
$$

where the first term is the spin-orbit coupling, the second one accounts for the orbital distortion of the triplet T_{1} [T_{1} breaks its degeneracy under a C_{4} symmetry group giving an orbital doublet (E) and an orbital singlet $\left(A_{2}\right)$ which are separated by an energy gap (Δ)]. κ is the orbital reduction due to covalency.

The secular determinant relevant to the application of the Hamiltonian of eqn (1) may be arranged and factorized in the following sub-determinants: ${ }^{19}$

	$\mid 1,-1>$	$\mid-1,1>$
$<1,-1 \mid$	$(\Delta / 3-\kappa \lambda)-E$	0
$<-1,1 \mid$	0	$(\Delta / 3-\kappa \lambda)-E$

	$\|1,1\rangle$	$\|0,0\rangle$	$\|-1,-1\rangle$
$<1,1 \mid$	$(\Delta / 3+\kappa \lambda)-E$	$-\kappa \lambda$	0
$<0,0 \mid$	$-\kappa \lambda$	$-2 \Delta / 3-E$	$-\kappa \lambda$
$<-1,-1 \mid$	0	$-\kappa \lambda$	$(\Delta / 3+\kappa \lambda)-E$

	$\|1,0\rangle$	$\|0,-1\rangle$	$\|-1,0\rangle$	$\|0,1\rangle$
$<1,0 \mid$	$\Delta / 3-E$	$-\kappa \lambda$	0	0

$<0,-1 \mid$	$-\kappa \lambda$	$-2 \Delta / 3-E$	0	0
$<-1,0 \mid$	0	0	$\Delta / 3-E$	$-\kappa \lambda$
$<0,1 \mid$	0	0	$-\kappa \lambda$	$-2 \Delta / 3-E$

The values of the energy levels from these determinants are:
$E_{1}=E_{2}=\frac{\Delta}{3}-\kappa \lambda$
$E_{3}=E_{4}=\frac{1}{2}\left[-\frac{\Delta}{3}+\left(\Delta^{2}+4 \kappa^{2} \lambda^{2}\right)^{1 / 2}\right]$
$E_{5}=E_{6}=\frac{1}{2}\left[-\frac{\Delta}{3}-\left(\Delta^{2}+4 \kappa^{2} \lambda^{2}\right)^{1 / 2}\right]$
$E_{7}=\frac{\Delta}{3}+\kappa \lambda$
$E_{8}=\frac{1}{2}\left[-\frac{\Delta}{3}+\kappa \lambda+\left(\Delta^{2}+2 \kappa \lambda \Delta+4 \kappa^{2} \lambda^{2}\right)^{1 / 2}\right]$
$E_{9}=\frac{1}{2}\left[-\frac{\Delta}{3}+\kappa \lambda-\left(\Delta^{2}+2 \kappa \lambda \Delta+4 \kappa^{2} \lambda^{2}\right)^{1 / 2}\right]$

