Journal Name

ARTICLE

Electronic supplementary information (ESI)

Synthesis, crystal structure and magnetic properties of the complex [ReCl₃(tppz)] · MeCN

J. Palion-Gazda,^a I. Gryca,^a B. Machura,^{*a} Francesc Lloret,^b and Miguel Julve^{*b}

^a Department of Crystallography, Institute of Chemistry, University of Silesia, 9th Szkolna St., 40-006 Katowice, Poland. E-mail: basia@ich.us.edu.pl

^b Departament de Química Inorgànica/Instituto de Ciencia Molecular (ICMol), Facultat de Química de la Universitat de València, C/ Catedrático José Beltrán 2, 46980 Paterna, València, Spain. E-mail: miguel.julve@uv.es

Contents

Table S1. Selected magneto-structural data for six-coordinate rhenium(III) complexes.

Figure S1. IR spectrum of 1.

Figure S2. The X-Ray powder diffraction pattern of compound 1 (experimental - black) and the simulation of the powder pattern of 1 from the crystal structure (red).

Figure S3. ¹H (a) and ¹³C NMR (b) spectra of compound 1.

Appendix. Energy levels for a ${}^{3}T_{1}$ term arising from the $t_{2}{}^{4}$ electronic configuration under a tetragonal ligand-field and spin-orbit coupling.

[ReX ₃ L ₃] ^b	Re-X	Re–N	Configuration of halide anions	Magnetic properties	Ref.
	2.367(2)	2.117(8)			
$[ReCl_3(py)_3]$	2.367(2)	2.120(8)	mer	с	14b
	2.397(2)	2.116(5)			
	2.513(2)	2.111(10)			
$[\text{ReBr}_3(\text{py})_3]$	2.506(2)	2.122(10)	mer	с	14b
	2.534(2)	2.121(9)			
	2.3220(18)	2.133(5)			
[ReCl ₃ (Hpz) ₃]	2.3101(18)	2.095(5)	mer	1.8 BM	14j
	2.3120(18)	2.093(5)			U
	2.356(4)	2.13(1)			
$[\operatorname{ReCl}_3(3,5-\operatorname{lut})_3]$	2.3624)	2.13(1)	mer	с	14d
	2.402(4)	2.12(1)			
	2.384(3)	2.075(9)			
$[ReCl_3(L^1Et)]$	2.384(3)	2.075(9)	fac	paramegnetic	14h
	2.391(4)	2.154(14)			
	2.3741(17)	2.078(6)			
$[\text{ReCl}_3(\text{L}^4\text{Et})]$	2.3996(16)	2.084(5)	fac	с	14h
. , –	2.4040(17)	2.209(5)			

Table S1. Selected magneto-structural data for six-coordinate rhenium(III) complexes^a

^a Only six-coordinate Re(III) complexes with a ReN₃Cl₃ chromophore were considered. ^bAbbreviation for the ligands: py = pyridine, Hpz = pyrazole, 3,5-lut = 3,5-dimethylpyridine, L¹Et = $(2-C_5H_4NCH_2)_2NCH_2CO_2C_2H_5$, L⁴Et = $(2-C_5H_4NCH_2)N(CH_3C_3H_2N_2CH_2)(CH_2CO_2C_2H_5)$. ^c Not measured.

Figure S1. IR spectrum of 1.

Figure S2. X-ray powder diffraction pattern of 1: (black) experimental; (red) simulation of the powder pattern from the crystal structure.

Journal Name

Figure S3. 1 H (a) and 13 C NMR (b) spectra of compound 1.

Appendix: Energy levels for a ${}^{3}T_{1}$ term arising from the $t_{2}{}^{4}$ electronic configuration under a tetragonal ligandfield and spin-orbit coupling

In order to simplify the calculations, we take advantage of the isomorphism between the orbital triplet ${}^{3}T_{1}$ coming from the $t_{2}{}^{4}$ electronic configuration and the triplet L = 1 from a ${}^{3}P$ term (p^{4} electronic configuration). The matrix elements of L within the orbital triplet T_{1} are exactly the same than those contained in the matrix of (-1)L in the associated P state (strong ligand-field approach). So, we can use the $||T_{1}|| = -\kappa ||P||$ relationship where κ is the orbital reduction factor due to the covalency effects.¹⁹ In this respect, the wave-functions for the ${}^{3}T_{1}$ term are written in the form of $|M_{L}, M_{S}$ > with $M_{L} = 0, \pm 1$ and $M_{S} = 0, \pm 1$. The tetragonal distortion and spin-orbit coupling are treated simultaneously through the Hamiltonian of eqn (1)

$$\hat{H} = -\kappa \lambda \hat{L}\hat{S} + \Delta(\hat{L}_z^2 - 2/3) \tag{1}$$

where the first term is the spin-orbit coupling, the second one accounts for the orbital distortion of the triplet T_1 [T_1 breaks its degeneracy under a C_4 symmetry group giving an orbital doublet (*E*) and an orbital singlet (A_2) which are separated by an energy gap (Δ)]. κ is the orbital reduction due to covalency.

The secular determinant relevant to the application of the Hamiltonian of eqn (1) may be arranged and factorized in the following sub-determinants:¹⁹

	1, -1>	-1, 1>
<1, -1	(Δ/3-κλ)-E	0
<-1, 1	0	(Δ/3-κλ)-E

	1, 1>	0, 0>	-1, -1>
<1, 1	(<i>∆</i> /3+κλ)-E	-кλ	0
<0, 0	-κλ	-2⊿/3- E	-κλ
<-1, -1	0	-кλ	(Δ/3+κλ)-E

	1, 0>	0, -1>	-1, 0>	0, 1>
<1, 0	∆/3-E	-кλ	0	0

ARTICLE

Journal Name

<0, -1	-κλ	-2⊿/3- E	0	0
<-1, 0	0	0	⊿/3-Е	-кλ
<0, 1	0	0	-κλ	<i>—2∆</i> /3-Е

The values of the energy levels from these determinants are:

$$E_{1} = E_{2} = \frac{\Delta}{3} - \kappa\lambda$$

$$E_{3} = E_{4} = \frac{1}{2} \left[-\frac{\Delta}{3} + (\Delta^{2} + 4\kappa^{2}\lambda^{2})^{1/2} \right]$$

$$E_{5} = E_{6} = \frac{1}{2} \left[-\frac{\Delta}{3} - (\Delta^{2} + 4\kappa^{2}\lambda^{2})^{1/2} \right]$$

$$E_{7} = \frac{\Delta}{3} + \kappa\lambda$$

$$E_{8} = \frac{1}{2} \left[-\frac{\Delta}{3} + \kappa\lambda + (\Delta^{2} + 2\kappa\lambda\Delta + 4\kappa^{2}\lambda^{2})^{1/2} \right]$$

$$E_{9} = \frac{1}{2} \left[-\frac{\Delta}{3} + \kappa\lambda - (\Delta^{2} + 2\kappa\lambda\Delta + 4\kappa^{2}\lambda^{2})^{1/2} \right]$$