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In order to investigate the growth mechanism of such architecture, each reaction stage
was traced. When RGO@PDA mixed with FeCl;-6H,0, The coated PDA can absorb
and immobilize Fe3" by the strong metal coordination ability of the catechol groups as
proved by EDSI-2! (Fig. S2a) and the subsequent reaction would be carried out on the
surface of RGO@PDA. At the earch stage of EG-mediated process (treated 0 min), EG
first coordinated with FeCl; to produce iron alkoxide, which precipitated to become the
nuclei and quickly grew in the form of nanoparticles on the surfaces of the RGO@PDA,
which served as “seed” (Fig. S2b). When treated 1 min, more particles were formed
with larger size, which overlaied both surfaces of the RGO@PDA (Fig. S2¢). With the
reaction proceeded, primary particles undergo a structural modification to smooth their
surfaces through traditional Ostwald ripening, and a specified nanosheet was formed
via a secondary growth stage (Fig. S2d). It was in agreement with the previous report.[3]
When treated 5 min, close and homogeneous iron alkoxide nanosheets grew on both
surfaces of the RGO@PDA as shown in Fig. S2e. However, treated more than 10 min,
the nanosheets on the RGO@PDA trended to aggregate into close-packed microspheres



composed of nanosheets shown in Fig. S2f.
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Fig. S2 SEM images of RGO@PDA (a), inset showing the corresponding EDS, and
RGO@PDA@iron alkoxide collected at different intervals: (b) 0 min, (¢) 1 min, (d)
3min, (e) 5 min, (f) 10 min.
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Fig. S3 Frequency dependence of the real part (a) and imaginary part (b) of

complex permittivity and the real part (c¢) and imaginary part (d) of complex
permeability, dielectric loss tangent (e¢) and magnetic loss tangent (f) for GO and
RGO@PDA.
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Fig. S4 Frequency dependence of u''(1')f! for graphene@carbon@Fe;0, nanosheet
arrays.



