Bifunctional Thiourea Catalyzed Asymmetric Michael Addition of Anthrone to Methyleneindolinones

Huaili Zhao^a, Mingyan Xiao^a, Lubin Xu^a, Liang Wang^{a,b}* and Jian Xiao^{a,b}*

- ^a College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, 266109, China.
- ^b Open Project Program of Hubei Key Laboratory of Drug Synthesis and Optimization, Jingchu University of Technology (Nos. OPP2015YB01 and OPP2015ZD02)

Supporting Information

CONTENTS

1.	General Methods	S2
2.	Experimental Procedures	S2
3.	Characterization of Products	S3
4.	¹ H and ¹³ C NMR Spectra	S9
5.	HPLC Spectra	S20
6.	X-Ray structures for 3d and 4g	S31

1. General Methods

All the chemical reagents were purchased from commercial companies. All reactions were performed in flask and monitored by TLC (0.2 mm silica gel-coated HSGF 254 plate). The reaction mixtures were purified by flash column chromatography (200-300 mesh silica gel) eluted with the gradient of petroleum ether and ethyl acetate.

Proton nuclear magnetic resonance spectra (¹H NMR) were recorded on a Bruker AMX 500 spectrophotometer (CDCl₃ as solvent). Chemical shifts were reported in ppm using tetramethylsilane (TMS, δ (ppm) = 0.00 ppm) as the internal standard, and relative to the signal of chloroform-d (δ 7.26, singlet). The number of protons for a given resonance was indicated by nH. Coupling constants were reported as a *J* value in Hz. The following abbreviations were used to indicate the multiplicity: singlet (s), doublet (d), triplet (t), quartet (q), doublet of doublets (dd), and multiplet (m). Carbon nuclear magnetic resonance spectra (¹³C NMR) were reported in ppm using solvent CDCl₃ (δ (ppm) = 77.17 ppm) as an internal standard. HRMS analyses were performed on a Waters XEVO QTOF mass spectrometer. X-ray structure for compounds was determined on X-ray single crystal diffractometer (Model Specifications: D8 QUEST). Specific rotations values were measured with a digital polarimeter (Model Specifications: P850A), equipped with a sodium lamp source (589.3 nm), at 25 °C in a 10 cm cell and the indicated solvent. The compounds 3-alkylideneindolin-2-ones **2** were prepared according the reported procedures.^[1]

2. Experimental Procedures

General procedure for reaction of anthrone with methyleneindolinones

To a 10 mL flask with a magnetic bar, were added dichloromethane (2 mL), anthrone 1 (0.36 mmol), 3-alkylideneindolin-2-ones 2 (0.3 mmol) and chiral catalyst 6 (8.92 mg, 5 mol%). The mixture was then stirred at room temperature and monitored by TLC until 2 was consumed up. Then the solvent was removed *in vacuo*. The residue was purified by column chromatography on silica gel to afford the desired product 3 or 4.

References

^[1] G. Wang, X. Liu, T. Huang, Y. Kuang, L. Lin, X. Feng, Org. Lett., 2013, 15, 76.

3. Characterization of Products

(*R*)-tert-butyl-3-((*S*)-2-ethoxy-2-oxo-1-(10-oxo-9,10-dihydroanthracen-9-yl)ethyl)-2-oxoi ndoline-1-carboxylate (3a)

white solid, melting point 182-184 °C, yield 95%;

major isomer: ¹**H NMR** (500 MHz, CDCl₃) δ 8.22 (ddd, J = 7.6, 7.1, 4.7 Hz, 2H), 8.10 (d, J = 7.6 Hz, 1H), 7.72 (d, J = 8.2 Hz, 1H), 7.58-7.53 (m, 1H), 7.52-7.41 (m, 3H), 7.38-7.33 (m, 1H), 7.21 (t, J = 7.9 Hz, 1H), 6.97 (t, J = 7.5 Hz, 1H), 6.87 (d, J = 7.6 Hz, 1H), 5.40 (d, J = 10.4 Hz, 1H), 3.69-3.63 (m, 1H), 3.61 (d, J = 4.1 Hz, 1H), 3.53-3.45 (m, 1H), 2.95 (dd, J = 10.4, 4.1 Hz, 1H), 1.70 (s, 9H), 0.69 (t, J = 7.1 Hz, 3H).¹³**C NMR** (125 MHz, CDCl₃) δ 185.5, 174.0, 170.5, 149.1, 142.7, 142.6, 140.3, 133.2, 133.1, 132.4, 129.6, 128.7, 128.6, 128.4, 128.2, 128.0, 124.9, 124.2, 123.7, 115.2, 84.6, 61.3, 60.8, 44.4, 41.6, 28.3, 13.6. **HRMS (ESI)** calcd. for C₃₁H₂₉NO₆Na, [M+Na]: 534.1893; found: 534.1898.

(R)-tert-butyl 4-chloro-3-((S)-2-ethoxy-2-oxo-1-(10-oxo-9,10-dihydroanthracen-9-yl)

ethyl)-2-oxoindoline-1-carboxylate (3b)

white solid, melting point 84-86 °C, yield 93%;

major isomer: ¹**H NMR** (500 MHz, CDCl₃) δ 8.26 (d, J = 7.6 Hz, 1H), 8.20 (dd, J = 8.4, 4.7 Hz, 2H), 7.67 (d, J = 8.2 Hz, 1H), 7.59 (t, J = 7.4 Hz, 1H), 7.52 (t, J = 7.4 Hz, 1H), 7.46-7.38 (m, 2H), 7.37-7.31 (m, 1H), 7.15 (t, J = 8.2 Hz, 1H), 6.92 (d, J = 8.1 Hz, 1H), 5.33 (d, J = 10.9 Hz, 1H), 3.67 (d, J = 3.8 Hz, 1H), 3.66-3.59 (m, 1H), 3.48 (dd, J = 10.9, 3.9 Hz, 1H), 3.45-3.38 (m, 1H), 1.71 (s, 9H), 0.63 (t, J = 7.1 Hz, 3H).¹³**C NMR** (125 MHz, CDCl₃) δ 185.3, 172.7, 170.3, 148.9, 142.6, 142.4, 141.7, 133.1, 132.9, 132.2, 130.3, 129.9, 129.61, 128.4, 128.3, 128.1, 127.9, 127.8, 124.8, 122.6, 113.4, 84.8, 77.2, 60.6, 58.7, 44.5, 41.4, 28.2, 13.4. **HRMS (ESI**): calcd. for C₃₁H₂₈NO₆NaCl, [M+Na]: 568.1503; found: 568.1504.

(*R*)-tert-butyl 4-chloro-3-((*S*)-2-methoxy-2-oxo-1-(10-oxo-9,10-dihydroanthracen-9-yl) ethyl)-2-oxoindoline-1-carboxylate (3c)

yellow solid, melting point 95-97 °C, yield 96%;

major isomer:¹**H NMR** (500 MHz, CDCl₃) δ 8.26 (d, J = 7.8 Hz, 1H), 8.23-8.15 (m, 2H), 7.68 (d, J = 8.2 Hz, 1H), 7.61-7.56 (m, 1H), 7.55-7.39 (m, 4H), 7.15 (q, J = 8.1 Hz, 1H), 6.93 (d, J = 8.1 Hz, 1H), 5.34 (d, J = 10.9 Hz, 1H), 3.69 (d, J = 3.8 Hz, 1H), 3.51 (dd, J = 10.8, 3.9 Hz, 1H), 3.04 (s, 3H), 1.71 (s, 9H).¹³**C NMR** (125 MHz, CDCl₃) δ 185.0, 172.5, 170.7, 148.7, 142.4, 142.2, 141.5, 132. 9, 132.7, 132.0, 130.0, 129.8, 129.4, 128.2, 128.0, 127.9, 127.8, 127.7, 124.7, 122.3, 113.3, 84.6, 58.5, 51.3, 44.2, 41.4, 28.0.

HRMS (ESI): calcd. for C₃₀H₂₆NO₆NaCl, [M+Na]: 554.1346; found: 554.1350.

(*R*)-tert-butyl 4-chloro-2-oxo-3-((*S*)-2-oxo-1-(10-oxo-9,10-dihydroanthracen-9-yl)-2-phenylethyl)indoline-1-carboxylate (3d)

yellow solid, melting point 95-97 °C, yield 60%;

major isomer: ¹**H NMR** (500 MHz, CDCl₃) δ 8.32 (dd, J = 13.8, 7.6 Hz, 2H), 8.02 (d, J = 7.5 Hz, 1H), 7.65-7.51 (m, 3H), 7.20 (t, J = 7.3 Hz, 1H), 7.13-6.97 (m, 8H), 6.66 (d, J = 8.1 Hz, 1H), 5.44 (d, J = 10.6 Hz, 1H), 4.60 (dd, J = 10.7, 3.8 Hz, 1H), 3.71 (d, J = 3.7 Hz, 1H), 1.75 (s, 9H).¹³**C NMR** (125 MHz, CDCl₃) δ 200.1, 185.4, 173.2, 149.0, 143.1, 142.0, 141.6, 136.8, 133.1, 132.9, 132.8, 132.3, 132.2, 129.8, 129.6, 129. 5, 128.3, 128.0, 127.9, 127.7, 127.5, 127.4, 124.4, 122.6, 113.6, 84.7, 58.5, 45.0, 42.8, 28.2.

HRMS (ESI) calcd. for C₃₅H₂₈NO₅NaCl, [M+Na]: 600.1554; found: 600.1552.

(R)-tert-butyl 4-bromo-2-oxo-3-((S)-2-oxo-1-(10-oxo-9,10-dihydroanthracen-9-yl)-2-

phenylethyl)indoline-1-carboxylate (3e)

(3R,4S)-3e

yellow solid, melting point 95-97 °C, yield 54%;

major isomer: ¹**H NMR** (500 MHz, CDCl₃) δ 8.31 (t, J = 8.2 Hz, 2H), 8.04 (d, J = 7.5 Hz, 1H), 7.63 (dd, *J* = 6.9, 4.7 Hz, 2H), 7.58-7.50 (m, 1H), 7.24-6.96 (m, 8H), 6.89 (t, *J* = 8.1 Hz, 1H), 6.84 (d, J = 8.0 Hz, 1H), 5.42 (d, J = 10.6 Hz, 1H), 4.68 (dd, J = 10.7, 3.6 Hz, 1H), 3.65 (d, J = 3.4 Hz, 1H), 1.75 (s, 9H).¹³C NMR (125MHz, CDCl₃) δ 200.2, 185.7, 173.2, 149.1, 143.2, 142.2, 141.8, 137.1, 133.3, 133.2, 132.9, 132.4, 130.1, 129.7, 128.3, 128.2, 128.0, 127.8, 127.6, 124.7, 118.3, 114.2, 84.8, 58.7, 46.4, 43.0, 28.3.

HRMS (ESI) calcd. for C₃₅H₂₈NO₅NaBr, [M+Na]: 644.1049; found: 644.1038.

(S)-tert-butyl 2-oxo-3-(2-oxo-2-phenylethyl)-3-(10-oxo-9,10-dihydroanthracen-9-yl) indoline-1-carboxylate (4f)

yellow solid, melting point 182-185 °C, yield 60%; $[\alpha]_{p^{25}} = +2.94$ (λ 589.3nm, c 0.68, CH₃OH). ¹**H** NMR (500 MHz, CDCl₃) δ 8.16 (d, J = 7.7 Hz, 1H), 7.78-7.70 (m, 5H), 7.63-7.48 (m, 3H), 7.44-7.36 (m, 4H), 7.30 (t, J = 7.6 Hz, 1H), 7.18-7.10 (m, 1H), 6.78 (t, J = 7.5 Hz, 1H), 5.93 (d, J = 7.2 Hz, 1H), 4.68 (s, 1H), 4.09 (d, J = 17.9 Hz, 1H), 3.70 (d, J = 17.8 Hz, 1H), 1.59 (s, 9H).¹³C NMR (125MHz, CDCl₃) δ 194.8, 183. 8, 178.1, 148.2, 140.5, 138.7, 137.6, 135.9, 135.6, 133. 7, 133.6, 131.6, 131.4, 129.6, 129.3, 129.0, 128.8, 128.7, 128.1, 128.0, 127.4, 126.4, 125.6, 123.8, 114. 7, 83. 9, 55.8, 52.2, 45.8, 28.3.

HRMS (ESI) calcd. for C₃₅H₂₉NO₅Na, [M+Na]: 566.1943; found 566.1940.

(S)-tert-butyl 3-(2-(4-chlorophenyl)-2-oxoethyl)-2-oxo-3-(10-oxo-9,10-dihydroanthr acen-9-yl)indoline-1-carboxylate (4g)

yellow solid, melting point 121-123 °C, yield 50%; $[\alpha]_{D^{25}} = -2.85$ (λ 589.3nm, c 0.391, CH₃OH).

¹**H NMR** (500 MHz, CDCl₃) δ 8.16 (d, J = 7.7 Hz, 1H), 7.76 (d, J = 7.6 Hz, 1H), 7.70 (t, J = 7.9 Hz, 4H), 7.62-7.57 (m, 1H), 7.54 (d, J = 7.6 Hz, 1H), 7.42 (t, J = 7.5 Hz, 1H), 7.37 (t, J = 9.0 Hz, 3H), 7.30 (t, J = 7.5 Hz, 1H), 7.15 (t, J = 7.8 Hz, 1H), 6.79 (t, J = 7.5 Hz, 1H), 5.92 (d, J = 7.4 Hz, 1H), 4.68 (s, 1H), 4.07 (d, J = 17.9 Hz, 1H), 3.64 (d, J = 17.9 Hz, 1H), 1.59 (s, 9H).¹³**C NMR** (125 MHz, CDCl₃) δ 193. 7, 183.7, 178.0, 148.1, 140.5, 140.1, 138.5, 137.5, 135.5, 134.2, 133.5, 132.3, 131. 6, 131.4, 129.5, 129.4, 129.3, 129.0, 128. 9, 128.7, 128.6, 128.0, 127.3, 126. 7, 126.3, 125.5, 123.8, 123.7, 114.6, 83.9, 55.8, 52.1, 45.6, 28.2. **HRMS** (ESI): calcd.for C₃₅H₂₈NO₅NaCl, [M+Na]: 600.1554; found: 600.1552.

tert-butyl (S)-5-methyl-2-oxo-3-(2-oxo-2-phenylethyl)-3-(10-oxo-9,10-dihydroanthracen-9-yl) indoline-1-carboxylate (4h)

White solid, melting point 173-175 °C, yield 57%; $[\alpha]_{D}^{25} = -14.01$ (λ 589.3nm, *c* 0.666, CH₃OH).

¹**H NMR (500 MHz, CDCl₃):** δ 8.18 (d, J = 7.6 Hz, 1H), 7.78 (d, J = 7.4 Hz, 2H), 7.73 (d, J = 4.6 Hz, 3H), 7.60 (m, 1H), 7.52 (t, J = 6.9 Hz, 2H), 7.40 (t, J = 7.7 Hz, 3H), 7.28 (t, J = 7.6 Hz, 1H), 7.23 (d, J = 8.3 Hz, 1H), 6.92 (d, J = 8.2 Hz, 1H), 5.64 (s, 1H), 4.67 (s, 1H), 4.09 (d, J = 23.2 Hz, 1H), 3.64 (d, J = 17.9 Hz, 1H), 2.06 (s, 3H), 1.58 (s, 9H).

¹³C NMR (125 MHz, CDCl3) δ 194.7, 183.5, 178.2, 148.3, 138.8, 138.0, 137.7, 136.0, 135.9, 133.6, 133.6, 133.4, 131.5, 131.4, 129.7, 129.3, 1289.0, 128.7, 128.1, 128.0, 127.0, 126.3, 125.5, 124.7, 114.4, 83.7, 55.8, 52.3, 45.6, 28.3, 27.0, 20.9.

HRMS (ESI): Calcd.for C₃₆H₃₁NO₅Na, [M+Na]: 580.2100; Found: 580.2097.

tert-butyl (S)-5-methoxy-2-oxo-3-(2-oxo-2-phenylethyl)-3-(10-oxo-9,10-dihydroanthra cen-9-yl)indoline-1-carboxylate (4i)

White solid, melting point 187-190 °C, yield 71%; $[\alpha]_D^{25} = -5.22$ (λ 589.3nm, *c* 0.421, CH₃OH).

¹**H NMR (500 MHz, CDCl₃):** δ 8.19 (d, J = 7.7 Hz, 1H), 7.77 (d, J = 7.7 Hz, 3H), 7.73 (d, J = 4.0 Hz, 2H), 7.60 (dt, J = 8.1, 4.2 Hz, 1H), 7.53 (t, J = 6.8 Hz, 2H), 7.40 (t, J = 7.6 Hz, 3H), 7.32 – 7.27 (m, 2H), 6.65 (dd, J = 8.9, 2.4 Hz, 1H), 5.50 (d, J = 2.3 Hz, 1H), 4.68 (s, 1H), 4.09 (d, J = 17.9 Hz, 1H), 3.61 (d, J = 17.9 Hz, 1H), 3.58 (s, 3H), 1.58 (s, 9H).

¹³C NMR (125 MHz, CDCl₃): δ 194.7, 183.8, 178.1, 156.0, 148.3, 138.7, 137.7, 136.0, 135.8, 133.8, 133.7, 131.6, 131.4, 129.8, 128.9, 128.8, 128.8, 128.1, 128.0, 127.2, 126.8, 126.4, 115.7, 114.6, 110.3, 83.7, 55.8, 55.6, 52.2, 45.8, 28.3.

HRMS (ESI): Calcd.for C₃₆H₃₁NO₆, [M+Na]: 596.2049; Found: 596.2048.

ethyl (S)-2-oxo-3-(2-oxo-2-phenylethyl)-3-(10-oxo-9,10-dihydroanthracen-9-yl)indoline-1 -carboxylate (4j)

White solid, melting point 205-207 °C, yield 36%; $[\alpha]_D^{25} = 5.93 (\lambda 589.3 \text{ nm}, c 0.1, \text{CH}_3\text{OH}).$

¹**H** NMR (500 MHz, CDCl₃): δ 8.18 (d, J = 7.7 Hz, 1H), 7.76 (dd, J = 10.3, 5.9 Hz, 4H), 7.63 – 7.59 (m, 1H), 7.54 (dd, J = 7.3, 4.8 Hz, 2H), 7.46 (d, J = 8.2 Hz, 1H), 7.40 (dd, J = 12.9, 7.3 Hz, 3H), 7.30 (t, J = 7.5 Hz, 1H), 7.16 (t, J = 7.8 Hz, 1H), 6.80 (t, J = 7.5 Hz, 1H), 5.93 (d, J = 7.4 Hz, 1H), 4.70 (s, 1H), 4.47 – 4.32 (m, 2H), 4.10 (d, J = 17.9 Hz, 1H), 3.72 (d, J = 17.8 Hz, 1H), 1.43 (t, J = 7.1 Hz, 3H).

¹³C NMR (125 MHz, CDCl₃) δ 194.8, 183.6, 177.8, 150.1, 140.3, 138.6, 137.6, 136.0, 135.7, 133.8, 133.7, 131.6, 131.3, 129.7, 129.4, 128.9, 128.8, 128.8, 128.2, 128.1, 127.5, 126.5, 125.8, 124.1, 123.8, 114.8, 63.1, 55.9, 52.1, 46.1, 14.5.

HRMS (ESI): Calcd. for C₃₃H₂₅NO₅Na, [M+Na]: 538.1630; Found: 538.1633.

(S)-1-acetyl-3-(2-oxo-2-phenylethyl)-3-(10-oxo-9,10-dihydroanthracen-9-yl)indolin-2-one (4k)

White solid, melting point 228-230 °C, yield 38%; $[a]_D^{25} = 7.60 \ (\lambda 589.3 \text{nm}, c \ 0.163, \text{CH}_3\text{OH}).$

¹**H** NMR (500 MHz, CDCl₃): δ 8.17 (d, J = 7.6 Hz, 1H), 7.82 (dd, J = 16.2, 7.9 Hz, 2H), 7.76 (d, J = 7.7 Hz, 2H), 7.68 (t, J = 7.4 Hz, 1H), 7.63 – 7.58 (m, 2H), 7.56 (dd, J = 13.9, 6.5 Hz, 1H), 7.50 (d, J = 7.5 Hz, 1H), 7.43 (m, 3H), 7.34 (t, J = 7.5 Hz, 1H), 7.19 (t, J = 7.8 Hz, 1H), 6.86 (t, J = 7.5 Hz, 1H), 6.03 (d, J = 7.4 Hz, 1H), 4.67 (s, 1H), 4.02 (d, J = 17.8 Hz, 1H), 3.80 (d, J = 17.8 Hz, 1H), 2.58 (s, 3H).

¹³C NMR (125 MHz, CDCl₃) δ 195.0, 183.6, 180.1, 167.0, 141.0, 138.4, 137.6, 135.9, 135.6, 133.9, 131.6, 131.2, 129.5, 129.4, 128.9, 128.6, 128.1, 127.4, 126.8, 126.1, 124.5, 123.6, 116.2, 55.9, 52.3, 46.1, 26.7.

HRMS (ESI): Calcd. for C₃₂H₂₂NO₄Na, [M+Na]: 508.1525; Found: 508.1526.

4. ¹H and ¹³C NMR Spectra

- 2.06

8 8 8 8 8 8 8 13 8 13 8 13 8 13 8 13 8 13 8 13 8 13 8 13 8 13 8 13 8 16 <

1.45
1.45
1.42
1.42

5. HPLC Spectra

(*R*)-tert-butyl 3-((*S*)-2-ethoxy-2-oxo-1-(10-oxo-9,10-dihydroanthracen-9-yl)ethyl)-2 -oxoindoline-1-carboxylate ((3R,4S)-3a)

The ee determined by chiral HPLC; CHIRALPAK AD-H (4.6 mm ø×250 mmL); hexane/2-propanol 95/5; flow rate 1.0 ml/min; temp 25 ℃; detection UV 210 nm.

(*R*)-tert-butyl 4-chloro-3-((*S*)-2-ethoxy-2-oxo-1-(10-oxo-9,10-dihydroanthracen-9-yl)ethyl)-2-oxoindoline-1-carboxylate ((**3***R*,**4***S*)-**3b**)

The ee determined by chiral HPLC; CHIRALPAK AD-H (4.6 mm ø×250 mmL); hexane/2-propanol 95/5; flow rate 1.0 ml/min; temp 25 ℃; detection UV 245 nm.

(*R*)-tert-butyl 4-chloro-3-((*S*)-2-methoxy-2-oxo-1-(10-oxo-9,10-dihydroanthracen -9-yl)ethyl)-2-oxoindoline-1-carboxylate ((**3***R*,**4***S*)-**3c**)

The ee determined by chiral HPLC; CHIRALPAK AD-H (4.6 mm $\emptyset \times 250$ mmL); hexane/2-propanol 95/5; flow rate 1.0 ml/min; temp 25 °C; detection UV 241 nm.

(*R*)-tert-butyl 4-chloro-2-oxo-3-((*S*)-2-oxo-1-(10-oxo-9,10-dihydroanthracen-9-yl) -2-phenylethyl)indoline-1-carboxylate ((3R, 4S)-3d)

The ee determined by chiral HPLC; CHIRALPAK AD-H (4.6 mm ø×250 mmL); hexane/2-propanol 95/5; flow rate 1.0 ml/min; temp 25 ℃; detection UV 224 nm.

(*R*)-tert-butyl 4-bromo-2-oxo-3-((*S*)-2-oxo-1-(10-oxo-9,10-dihydroanthracen-9-yl) -2-phenylethyl)indoline-1-carboxylate ((3R,4S)-3e)

The ee determined by chiral HPLC; CHIRALPAK AD-H (4.6 mm ø×250 mmL); hexane/2-propanol 95/5; flow rate 1.0 ml/min; temp 25 ℃; detection UV 260 nm.

(S)-tert-butyl 2-oxo-3-(2-oxo-2-phenylethyl)-3-(10-oxo-9,10-dihydroanthracen-9-yl) indoline-1-carboxylate ((S)-4f)

The ee determined by chiral HPLC; CHIRALPAK AD-H (4.6 mm ø×250 mmL); hexane/2-propanol 76/24; flow rate 0.8 ml/min; temp 25 °C; detection UV 260 nm.

(S)-tert-butyl 3-(2-(4-chlorophenyl)-2-oxoethyl)-2-oxo-3-(10-oxo-9,10-dihydroanthr acen-9-yl)indoline-1-carboxylate ((S)-4g)

The ee determined by chiral HPLC; CHIRALPAK AD-H (4.6 mm ø×250 mmL); hexane/2-propanol 76/24; flow rate 0.8 ml/min; temp 25 °C; detection UV 260 nm.

 $tert-butyl\ (S)-5-methyl-2-oxo-3-(2-oxo-2-phenylethyl)-3-(10-oxo-9,10-dihydroanthracen-9-yl) indoline-1-carboxylate\ ((S)-4h)$

The ee determined by chiral HPLC; CHIRALPAK IA (4.6 mm Ø×250 mmL); hexane/2-propanol 76/24; flow rate 0.8 ml/min; temp 25 °C; detection UV 210 nm.

tert-butyl (S)-5-methoxy-2-oxo-3-(2-oxo-2-phenylethyl)-3-(10-oxo-9,10-dihydroanthra cen-9-yl)indoline-1-carboxylate ((S)-4i)

The ee determined by chiral HPLC; CHIRALPAK IA (4.6 mm Ø×250 mmL); hexane/2-propanol 76/24; flow rate 0.8 ml/min; temp 25 °C; detection UV 210 nm.

ethyl (S)-2-oxo-3-(2-oxo-2-phenylethyl)-3-(10-oxo-9,10-dihydroanthracen-9-yl)indoline-1 -carboxylate ((S)-4j)

The ee determined by chiral HPLC; CHIRALPAK IC (4.6 mm ø×250 mmL); hexane/2-propanol 70/30; flow rate 0.8 ml/min; temp 25 °C; detection UV 210 nm.

 $(S) \mbox{-}1\mbox{-}acetyl-3\mbox{-}(2\mbox{-}oxo\mbox{-}2\mbox{-}phenylethyl)\mbox{-}3\mbox{-}(10\mbox{-}oxo\mbox{-}9\mbox{-}10\mbox{-}dhydroanthracen\mbox{-}9\mbox{-}yl)\mbox{indolin-}2\mbox{-}one \ ((S)\mbox{-}4k)$

The ee determined by chiral HPLC; CHIRALPAK OD-H (4.6 mm ø×250 mmL); hexane/2-propanol 76/24; flow rate 0.8 ml/min; temp 25 °C; detection UV 206 nm.

6. X-Ray Crystal Structures for 3d and 4g

(Displacement ellipsoids are drawn at the 50% probability level)

CCDC number	1432612
Identification code	3d
Empirical formula	C35H28CINO5
Formula weight	578.03
Temperature	293(2) K
Wavelength	1.54184 Å
Crystal system	Monoclinic
Crystal description	Block
Crystal colour	Colorless
Space group	P 21/c
Unit cell dimensions	$a = 15.0110(17) \text{ Å} \alpha = 90.00 \degree.$
	$b = 9.7516(8) \text{ Å} \beta = 120.444(8) \degree.$
	$c = 23.371(3) \text{ Å} \gamma = 90.00 ^{\circ}.$
Volume	2949.4(6) Å ³
Z	4
Density (calculated)	1.302 Mg/m ³
Absorption coefficient	1.505 mm ⁻¹
F(000)	1208
Crystal size	0.11 x0.12 x 0.12 mm ³
Theta range for data collection	3.42 to 67.24 °.
Index ranges	-14<=h<=17, -10<=k<=11, -27<=l<=27
Reflections collected	17500
Independent reflections	5291 [R(int) = 0.0803]
Data / restraints / parameters	5291 / 0 / 383
Goodness-of-fit on F2	1.152
Final R indices [I>2sigma(I)]	R1 = 0.0788, wR2 = 0.2118
R indices (all data)	R1 = 0.1144, wR2 = 0.2821
Largest diff. peak and hole	0.348and -0.483 e.Å ⁻³

(Displacement ellipsoids are drawn at the 50% probability level)

CCDC number	1432547	
Identification code	(<i>S</i>)-4g	
Empirical formula	C ₃₅ H ₂₈ ClNO ₅	
Formula weight	578.03	
Temperature	293(2) K	
Wavelength	1.54184	
Crystal system	Monoclinic	
Crystal description	Block	
Crystal colour	Colorless	
Space group	P 21	
Unit cell dimensions	$a = 9.6470(9) \text{ Å}$ $\alpha = 90.00 ^{\circ}.$	
	b = 15.6825(15) Å β = 100.860(10) °.	
	$c = 9.8683(11) \text{ Å} \qquad \gamma = 90.00 ^{\circ}.$	
Volume	1466.2(3) Å ³	
Z	2	
Density (calculated)	1.309 Mg/m ³	
Absorption coefficient	1.514	
F(000)	604	
Crystal size	0.11 x 0.12 x 0.11 mm ³	
Theta range for data collection	5.8740 to 54.6660 °.	
Index ranges	-11<=h<=7, -18<=k<=18, -11<=l<=11	
Reflections collected	9196	
Independent reflections	5094 [R(int) = 0.0598]	
Data / restraints / parameters	5094 / 1363 / 383	
Goodness-of-fit on F2	1.055	
Final R indices [I>2sigma(I)]	R1 = 0.0596, $wR2 = 0.1063$	
R indices (all data)	R1 = 0.1032, $wR2 = 0.1362$	
Largest diff. peak and hole	0.919 and -0.412 e.Å-3	