## Supporting Information for

# One-pot synthesis of Nanosheet-assembled hierarchical $\mathrm{MoSe}_{2} / \mathrm{CoSe}_{2}$ <br> microcages for the enhanced performance of electrocatalytic hydrogen evolution 

C. H. Mu, ${ }^{\text {a§ }}$ H. X. Qi,,$^{a, b §}$ Y. Q. Song, ${ }^{* a}$, Z. P. Liu, ${ }^{* b}$ L. X. Ji, ${ }^{\text {b }}$ J. G. Deng ${ }^{\text {b }}$, Y. B. Liao, ${ }^{\text {a }}$ and F. Scarpa ${ }^{\text {c }}$
a. School of Energy Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China. E-mail: yuanqiangsong@uestc.edu.cn
b. Institute of Chemical Materials, China Academy of Engineering Physics (CAEP), Mianyang 621900, China. E-mail: zhongpingliu0816@gmail.com
c. Bristol Centre for Nanoscience and Quantum Information, University of Bristol, BS8 1TR Bristol, UK
§These authors contribute equally.

## Table of Contents

S1. XPS spectra of MC11 composite, (a) full spectrum, (b) Mo 3d spectrum, (c) Co 2p spectrum, and (d) Se 3d spectrum.

S2. EDX spectrum of MC11 composite, showing an atomic ratio of Mo: Co: Se very close to 1: 1: 2.

S3. EDX mapping images of M11, which show a homogeneous distribution of selenium, molybdenum and cobalt throughout the microcage.

S4. Tafel plots of the $\mathrm{MoSe}_{2} / \mathrm{CoSe}_{2}$ composite including MC11, MC31 and MC13, respectively.

S5. Nyquist plots of the $\mathrm{MoSe}_{2} / \mathrm{CoSe}_{2}$ composite including MC11, MC31 andMC13, respectively. The inset shows the fitted results of the partial circle using simplified Randles equivalent circuit.


Figure S1.


Figure S2.


Figure S3.


Figure S4.


Figure S5.

