Pressure-induced structural changes and elemental dissociation

of cadmium and mercury chalcogenides

Yan Yan^{a,b}, Shoutao Zhang^a, Yanchao Wang^{a,*}, Guochun Yang^{a,c,*}, and Yanming Ma^a

- ^{a.} State Key Laboratory of Superhard Materials, Jilin University, Changchun 130012, P. R. China.
- ^{b.} School of Sciences, Changchun University, Changchun 130022, P. R. China.
- ^{c.} Faculty of Chemistry, Northeast Normal University, Changchun 130024, P. R. China.

Figure S1. The corresponding energy evolution related to phase transitions of $NaCl \rightarrow P2_1/m$ CdS with the relevant atom displacement (see Figure 2b).

Figure S2. The calculated electron localization functions (ELF) of tetragonal P4/nmm (Z = 2) phase for CdS at 120 GPa. The isosurface value is set as 0.75. The S atoms are small and yellow and the Cd atoms are large and pink.

Figure S3. The corresponding energy evolution related to phase transitions of $Cmcm \rightarrow Pnma$ CdSe with the relevant atom displacement (see Figure 2d).

Figure S4. The simulated x-ray diffraction patterns for the metastable P-3m1 phase of CdTe compared with the experimental data for the unresolved phase at 55 GPa.