Supporting Information

Facile preparation of highly electrically conductive films of silver nanoparticles

finely dispersed in polyisobutylene-b-poly(oxyethylene)-b-polyisobutylene triblock

copolymers and graphene oxide hybrid surfactants

Chih-Wei Chiu* and Gang-Bo Ou

Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan

* Corresponding author:

Tel: +886-2-2737-6521; Fax: +886-2-2737-6544; E-mail: cwchiu@mail.ntust.edu.tw

Contents:

Scheme S1. Reduction of Ag⁺ to Ag⁰ using DMF/H₂O.

Fig. S1 TEM micrographs of colloidal AgNPs in an AgNO₃/PIB-POE-PIB/GO-4% complex reduction with weight ratios of (a) 5:5:1, (b) 10:10:1, and (c) 20:20:1.

Fig. S2 TEM micrographs of colloidal AgNPs in an AgNO₃/PIB-POE-PIB/GO-20% complex reduction with weight ratios of (a) 5:5:1, (b) 10:10:1, and (c) 20:20:1.

Fig. S3 TEM micrographs of colloidal AgNPs in an AgNO₃/PIB-POE-PIB/GO-50% complex reduction with weight ratios of (a) 5:5:1, (b) 10:10:1, and (c) 20:20:1.

Fig. S4 Energy dispersive spectrometric (EDS) analysis of AgNP/PIB-POE-PIB/GO-50% nanohybrid film with a 20:20:1 weight ratio at 300 °C. Analysis shows the upper surface of the film.

Fig. S5 Demonstration of conductive and flexible properties of the AgNP/PIB-POE-PIB/GO-50% hybrid films at 350 °C on the polyimide (PI) substrate.

Table S1. Sheet resistance of GO and AgNP/PIB-POE-PIB/GO nanohybrid films with 350 °C heat treatment.

Table S2. Sheet resistance of the AgNP/PIB-POE-PIB/GO-50% nanohybrid film with a weight ratio of 20:20:1 and heat-treated at 350 °C.

Video S1. A movie showing a demonstration of LED bulbs illuminated using the electrical conductivity of the nanohybrid films is provided.

$(CH_3)_2NC(O)H + 2Ag^+ + H_2O \rightarrow (CH_3)_2NCOOH + 2Ag^0 + 2H^+$

Scheme S1. Reduction of Ag^+ to Ag^0 using DMF/H₂O.

Fig. S1 TEM micrographs of colloidal AgNPs in an AgNO₃/PIB-POE-PIB/GO-4% complex reduction with weight ratios of (a) 5:5:1, (b) 10:10:1, and (c) 20:20:1.

Fig. S2 TEM micrographs of colloidal AgNPs in an AgNO₃/PIB-POE-PIB/GO-20% complex reduction with weight ratios of (a) 5:5:1, (b) 10:10:1, and (c) 20:20:1.

Fig. S3 TEM micrographs of colloidal AgNPs in an AgNO₃/PIB-POE-PIB/GO-50% complex reduction with weight ratios of (a) 5:5:1, (b) 10:10:1, and (c) 20:20:1.

Fig. S4 Energy dispersive spectrometric (EDS) analysis of AgNP/PIB-POE-PIB/GO-50% nanohybrid film with a 20:20:1 weight ratio at 300 °C. Analysis shows the upper surface of the film.

Fig. S5 Demonstration of conductive and flexible properties of the AgNP/PIB-POE-PIB/GO-50% hybrid films at 350 °C on the polyimide (PI) substrate.

Table S1. Sheet resistance of GO and AgNP/PIB-POE-PIB/GO nanohybrid films with 350 °C heat treatment.

Sample ^a	Weight ratio (w/w/w)	Sheet resistance $(\Omega/sq)^b$
GO-4%		5.8×10^{1}
GO-20%		2.1×10^{1}
GO-50%		8.6×10^6
AgNP/PIB-POE-PIB/GO-50%	40:40:1	1.4×10^{-1}

^a Solution coating on a glass substrate.

 $^{\rm b}$ Solution coating on 60 μm thick films and the resulting sheet resistance measured using a four-point probe.

Table S2. Sheet resistance of the AgNP/PIB-POE-PIB/GO-50% nanohybrid film with a weight ratio of20:20:1 and heat-treated at 350 °C.

Sample ^a	Thickness (µm)	Sheet Resistance $(\Omega/sq)^{b}$
AgNP/PIB-POE-PIB/GO-50%	30	$7.8 imes 10^{-2}$
	60	$5.2 imes 10^{-2}$

^a Solution coated on a glass substrate.

^b Sheet resistance measured using a four-point probe.