

Supporting information

Platinum Functionalized Multiwall Carbon Nanotube Composites as Recyclable Catalyst for Highly Efficient Asymmetric Hydrogenation of Methyl Pyruvate

Poonam Sharma and Rakesh K Sharma

Department of Chemistry, Indian Institute of Technology Jodhpur, Old Residency Road, Ratanada, Jodhpur, Rajasthan- 342011, India, E-mail: rks@iitj.ac.in

1. TEM and SEM Images of Catalysts

Fig.S1 (a) and (b) TEM images of MWNT(inset shows ED pattern).

Fig.S2 SEM image of activated carbon.

Sample No.	Pt %	Ο%	С%
1	3.5	20	76.5
2	4.1	12.5	83.4
3	3.5	16.5	80
4	4.5	17.3	78.2
5	4.9	14.8	80.3

Fig.S3 Typical EDX of Pt/MWNT.

Fig.S4 Atomic weight distribution for five different samples of Pt/MWNT.

Journal Name

2. HPLC analysis

The enantiomerically excess was determined by HPLC analysis employing a chiral column from waters 2489 (Hexane: i-propanol:: 90:10 with 0.1% Na₂B₂O₇ buffer, 1.0 ml/min, $\lambda = 220$ nm, t₁= 2.9 min for *R* enantiomer, t₂ = 3.4 min for the *S* enantiomer). It has been established that the R enantiomer elute first by specific rotation. Selective chromatograms are given below for various catalysts.

Fig.S5 HPLC chromatogram of asymmetric heterogeneous hydrogenation of methyl pyruvate on Pt/MWNT.

Fig.S6 HPLC chromatogram of asymmetric heterogeneous hydrogenation of methyl pyruvate on Pt/Graphene.

Fig. S7 HPLC chromatogram of asymmetric heterogeneous hydrogenation of methyl pyruvate on Pt/Carbon Fiber.

Fig. S8 (a) HPLC chromatogram of asymmetric heterogeneous hydrogenation of methyl pyruvate on commercial Pt/AC. (b) Chromatogram of racemic mixture obtained from reaction without using chiral modifier.

3. FT-IR analysis

Fourier-transform infrared spectra (FT-IR) of the samples were recorded on a Vertex 70 v spectrometer (Bruker) in the range of 400-4000 cm⁻¹ with acetic acid as the reference sample. Measurements were performed in the transmission mode with

spectroscopic grade acetic acid solvent for all liquid samples. Product functional group are observed at 3345.54 cm⁻¹ (-OH), 2975.21 cm⁻¹ (-C–H), 1000-1266 cm⁻¹ (-C-O-), 1379.33 cm⁻¹ (-C–H), 1084 cm⁻¹ (-CH₃), 1052 cm⁻¹ (-O–C), 1710.34 cm⁻¹ (-C=O) and 831/827 cm⁻¹ (-C-*C*-, *C*-*H*-).

Fig.S9 IR spectrum of methyl lactate.

4. UV visible spectroscopy

UV visible spectroscopy data were carried on Varian Cary 4000 in the range of 200-800 nm.In case of methyl pyruvate two absorption peaks are observed at 210-238 nm and 332.86 nm. Hydrogenation of methyl pyruvate gave methyl lactate by reducing the carbonyl group to hydroxyl group. In that case methyl lactate gave only one peak at 210-250 nm.

Fig.S10 UV-vis spectrum of methyl pyruvate.

Fig.S11 UV-vis spectrum of methyl lactate.

5. NMR Spectra

Nuclear magnetic resonance spectra (¹H NMR) were recorded on a Bruker 500 spectrometer operating at 500 MHz for ¹H (CDCl₃). Chemical shift for ¹H NMR spectra are reported as δ in parts per million (PPM) downfield from SiMe₄ (δ 0.0) and relative to the signal of chloroform-d (δ 7.26, singlet)

Methyl lactate

¹H NMR (CDCl₃, 500 MHz) δ : 1.41 (d, 3 H, J = 7.05 Hz, CH₃), 2.93 (d, 1 H, J = 5 Hz OH, D₂O exchangeable), 3.79 (s, 3 H, CH₃), 4.29 (q, 1 H, J = 6.94 Hz, CH).

¹³C NMR (CDCl₃, 125 MHz) δ: 20, 52.2, 66.7, 175.7

 $[\alpha]_D^{20^{\circ}C} = +8.9 (C \ 1.5, \ 1, 4\text{-dioxane})$

ARTICLE

Fig.S13 ¹³C NMR spectrum of methyl pyruvate.

Fig. S14 ¹H NMR spectrum of purified product (Methyl lactate).

Please do not adjust margins

ARTICLE

Journal Name

Fig.S16¹³C NMR spectrum of purified product (Methyl Lactate).

6. Time dependent NMR studies for substrate-modifier-catalyst interaction.

Fig.S17 NMR spectrum of Methyl pyruvate and CD interaction (a, b, c) full spectra (d) chemical shift of H2 and H6 proton.

Table S1: Chemical shift during interaction of CD and Methyl pyruvate.

Proton	CD	CD + Methyl pyruvate	
н2,	8 79	8 87	
H3'	7 20	7.62	
Н5'	8.27	8.11	
Н6'	7.24	7.31	
H7'	7.33	7.24	
H8'	7.98	8.25	
H6AX	2.40	2.68	
H6EQ	2.20	2.20	
H5AX	1.61	1.78	
H5EQ	1.56	1.42	
H4	1.61	1.49	
H3	2.11	1.81	
H2AX	2.99	3.04	
H2EQ	3.24	4.22	
H7AX	0.854	0.74	
H7EQ	0.633	0.34	
H8	2.808	2.88	
H9	5 21	5 87	

Fig.S18 DRS of Pt/MWNT, Pt/CF and Pt/Graphene.

Fig.S19 TEM image of catalyst after 10 cycles with Pt/MWNT.

Table S2: Comparison with other Pt supported catalyst.

S.No.	Catalyst	Substrate	%ee	Reference
1	Pt/SiO ₂	Ethyl pyruvate	20	[1] 2015
2	Pt/ Al ₂ O ₃	Ethyl pyruvate	70	[2] 2014
3	Pt/Al ₂ O ₃	Methyl pyruvate	70	[3] 2010
4	Pt/Al ₂ O ₃	Ethyl pyruvate	20	[3] 2010
5	Pt/Al ₂ O ₃	Ethyl pyruvate	>80	[4] 2000
6	Pt/Al ₂ O ₃	Ethyl pyruvate	80	[5] 1997
7	Pt/TiO ₂	4,4-dimethyldihydrofuran-2,3-dione	79	[6] 1996
8	Pt/Al ₂ O ₃	Ethyl pyruvate	65	[7] 1995
9	Pt/SiO ₂	Biacetyl	38	[8] 1993
10	Pt/Al ₂ O ₃	Methyl and Ethyl Pyruvate	>95	[9] 2003
11	Pt/Al ₂ O ₃	Methyl Pyruvate	98	[10] 1999
12	Pt/Al ₂ O ₃	Ethyl Pyruvate	96	[11] 2000
13	Pt/MWNT	Methyl and Ethyl Pyruvate	96	[12] 2011
14	Pt/MWNT	Methyl pyruvate	>99	This work
15	Pt/AC	Methyl pyruvate	31	This work
16	Pt/Graphene	Methyl pyruvate	91	This work
17	Pt/Carbon fiber	Methyl pyruvate	89	This work

References

J. Hong, I. Lee and F. Zaera, Catal. Sci. Technol., 2015, 5, 680.
 Z. Weng and F. Zaera, J. Phys. Chem. C, 2014, 118, 3672.

- [3] M. Bartok, Chem. Rev., 2010, 110, 1663.
- [4] H.U. Blaser, H.P. Jalett, W. Lottenbach and M. Studer, J. Am. Chem. Soc. 2000, 122, 12675.
- [5] A. Pfaltz and T. Heinz, Top. Catal., 1997, 4, 229.
- [6] A.Balker, K. Borzeky, T. Mallat, M. Schiirch and O. Schwalm, Posters presented at the 4th International Symposium on Heterogeneous Catalysis and Fine Chemicals, Basel, September 1996.
- B. Minder, M. Schtirch, T. Mallat and A. Balker, Catal. Lett., 1995, 31, 143. [7]
- [8] W.A.H. Vermeer, A. Fulford, P. Johnston and P.B. Wells, J. Chem. Soc., Chem. Commun., 1993, 1053.
- [9] X. Li, X. You, P. Ying, J. Xiao and C. Li, Top Catal, 2003, 25, 63.

This journal is © The Royal Society of Chemistry 20xx

Journal Name

- [10] X. Zuo , H. Liu , D. Guo , X. Yang , Tetrahedron 1999, 55, 7787.
- [11] B. Török, K. Balázsik, M. Török, G. Szöllösi, M. Bartók, Ultrasonics Sonochemistry 2000, 7, 151
- [12] 11. Z. Chen, Z. Guan, M. Li, Q. Yang and C. Li, Angew. Chem. Int. Ed., 2011, 50, 4913.
 [13] M. Studer, H. U. Blaser and C. Exner, Adv. Synth. Catal., 2003, 345, 45-65.
- [14] E. Zhan, C. Chen, Y. Li and W. Shen, Catal. Sci. Technol., 2015, 5, 650-659.
- [14] D. Zhan, C. Chen, T. Er and W. Shen, Cutar. 601, 762105, 5, 650 659.
 [15] A. Rouhi, Chem. Eng. News, 2003, 81, 45.
 [16] M. Ibanez, V. vetere, G. Santori, M. Casella and O. Ferretti, J. Argent. Chem. Soc., 2003, 91, 63.
- [17] R. Noyori, Asymmetric Catalysis in Organic Synthesis, Wiley-VCH, New York, 1994.
- [18] A. Berkessel and H. Gröger, Asymmetric Organocatalysis, Wiley–VCH, Weinheim, 2005.
 [19] X. Zuo , H. Liu , D. Guo , X. Yang , Tetrahedron 1999, 55, 7787.