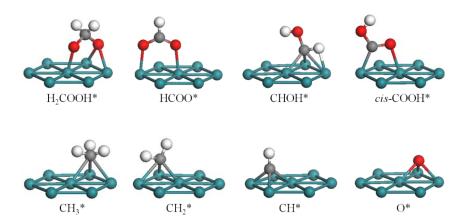
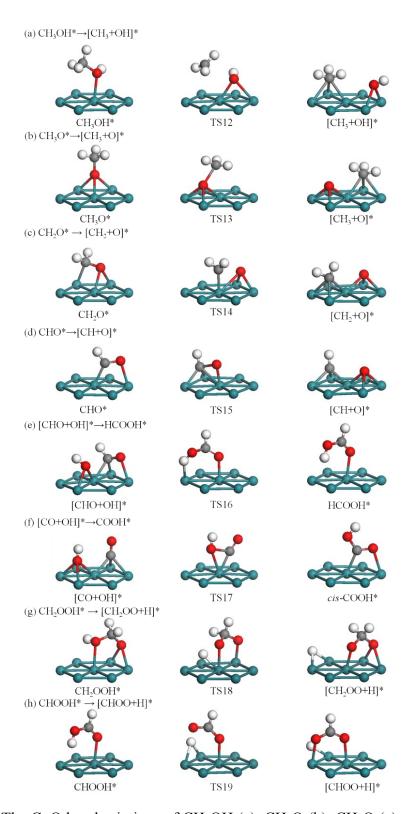
Electronic Supporting Information

Methanol oxidation on Ru(0001) for direct methanol fuel cells: Analysis of the competitive reaction mechanism

Xiaoqing Lu,^{a*} Weili Wang,^a Zhigang Deng,^b Houyu Zhu,^{a*} Shuxian Wei,^a Siu-Pang Ng,^b Wenyue Guo,^{a*} Chi-Man Lawrence Wu^b


^aCollege of Science, China University of Petroleum, Qingdao, Shandong 266580, P. R. China

^bDepartment of Physics and Materials Science, City University of Hong Kong, Hong Kong SAR, P. R. China


*Corresponding authors: Xiaoqing Lu and Wenyue Guo

E-mail address: luxq@upc.edu.cn and wyguo@upc.edu.cn

Telephone: +86 532 8698 3372; Fax: +86 532 8698 3363

Figure S1. Intermediates involved in CH_3OH oxidation on Ru (0001). Parameters follow the same notation as in Figure 1.

Figure S2. The C–O bond scissions of CH₃OH (a), CH₃O (b), CH₂O (c) and CHO (d), the combination of CHO and OH to form HCOOH (e), the reaction of CO with OH to form *cis*-COOH (f), the dehydrogenation of CH₂OOH to CH₂OO (g) and further dehydrogenation to CHOO (h).

Table S1. Adsorption sites, adsorption energies (in eV), and structural parameters (in angstroms and degrees) for intermediates involved in CH₃OH oxidation on Ru(0001).

species	site	configuration	$E_{ m ads}$	$d_{ m C/H-Ru}$	$d_{ m O-Ru}$	angles ^a
H ₂ COO*	hcp	$\eta^1(\mathrm{O})$ - $\eta^2(\mathrm{O})$	4.66		2.02, 2.15, 2.18	72
HCOO*	bridge	$\eta^1(\mathrm{O})$	3.24		2.15, 2.15	0
CHOH*	fcc	$\eta^2(C)$	3.36		2.11, 2.11	26
	hcp	$\eta^3(O)$	3.42		2.10, 2.10	43
cis-COOH*	bridge	$\eta^1(\mathbf{C})\text{-}\eta^1(\mathbf{O})$	2.68	2.05	2.21	31, 85
	fcc	$\eta^1(C)$	2.67	2.03		29, 84
	hcp	$\eta^1(C)$	2.68	2.03		30, 83
CH ₃ *	fcc	$\eta^3(C)$	2.23	2.22, 2.22, 2.22		
	hcp	$\eta^3(C)$	2.19	2.20, 2.21, 2.20		
	top	$\eta^1(C)$	1.86	2.15		
CH ₂ *	fcc	$\eta^3(C)$	5.00	2.09, 2.09, 2.24		
	hcp	$\eta^3(C)$	5.07	2.09, 2.09, 2.20		
CH*	fcc	$\eta^3(C)$	6.42	2.03, 2.03, 2.03		
	hcp	$\eta^3(C)$	6.63	2.02, 2.02, 2.02		
	top	$\eta^1(C)$	5.19	1.73		
O^*	fcc	$\eta^3(O)$	5.45		2.05, 2.05, 2.05	
	hcp	$\eta^3(O)$	5.71		2.02, 2.02, 2.02	

^a Values are angles between the surface normal and the C-O axis in the corresponding species.