Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2015

Supporting Information

Concordantly fabricated heterojunction ZnO-TiO₂ nanocomposites electrodes via co-precipitation method for stable quasi-solid-state dye-sensitized solar cells

Ahmed Esmail Shalan¹, Ahmed Mourtada¹, Mahmoud Rasly¹, Marwa M. Moharam¹, Monica Lira-Cantu² and Mohamed M. Rashad¹*

 ¹Electronic and Magnetic Laboratory, Advanced Materials Division, Central Metallurgical Research & Development Institute (CMRDI), P.O.Box 87 Helwan, Cairo, Egypt
²Centro de Investigació en Nanociència i Nanotecnologia, CIN2 (CSIC-ICN). Campus UAB, Edifici ETSE 2nd Floor, Bellaterra, Barcelona, Spain E-08193.

*Tel: 202-25010640-43, Fax: 202-25010639 E-mail: rashad133@yahoo.com

Experimental

Materials and methods

(Preparation of pure TiO₂ nanoparticles)

In a typical procedure for co-precipitation, titanium trichloride (TiCl₃) -Sigma Aldrich- as a source of Ti^{+2} ions is dissolving with an aqueous sodium hydroxide solution (5M) (Fluka) and adjust pH at desired values 7. The resulting milky white precipitate was collected, filtered, washed with distilled water for several times to remove impurities, and then dried at 80°C for 24 hr. The as prepared TiO₂ nanopowders were annealed at 600°C for 2 h. After cooling down, the thermally treated powders were collected, packed and kept in a desiccator for further physicochemical investigations.

Fig. S1. FESEM patterns of the pure TiO_2 nanoparticles (a), and UV-vis T % of pure TiO_2 nanoparticles (b), respectively.

Fig. S2. FTIR T % versus wavenumber (cm⁻¹) of ZnO/ TiO₂ nanocomposite.

Fig. S3. I–V characteristics of DSSCs made from the pure TiO_2 (a), and IPCE % of pure TiO_2 nanoparticles (b), respectively.

Effect of Dyes on the Photovoltaic Performance. Dyes also have important effect on the photovoltaic performance of quasi-solid-state DSCs. The photovoltaic performance of cell with ZnO-TiO₂ nanoparticles is superior to that of cell with pure ZnO or pure TiO₂ nanoparticles. The illumination intensity has stronger influence on the performance of cell with ZnO-TiO₂ nanoparticles. Under the illumination intensity of 100 mW cm⁻², the η of cell with ZnO-TiO₂ nanoparticles is 6.5 %. While it were 3.8 % and 5.6% in case of cell with ZnO and TiO₂, respectively. With the ZnO-TiO₂ nanocomposites, the photocurrent is small, which decreases the mass-transfer-related losses in J_{sc} and FF and increases the conversion efficiency. For the cell with ZnO nanoparticles, the change of η as a function of light intensity is not as obvious as that of cell with ZnO-TiO₂ nanoparticles because of its lower photocurrent even under the light intensity of 100 mW cm⁻².

The superior performance of cell with $ZnO-TiO_2$ nanoparticles to cell with ZnO nanoparticles can be analyzed from the properties of the dye molecular. The lowest unoccupied molecular orbital (LUMO) level of the dye plays an important role in the determination of current flow in the electron injection process. The more negative LUMO level can supply stronger driving force for effective electron injection. This is one of the reasons why the Ru-N719-sensitized solar cell has higher J_{sc} .

On the other hand, for the cell with ZnO-TiO₂ nanoparticles, the lower back reaction rate at the ZnO-TiO₂/electrolyte interface between the injected electrons and I_3^- also results in higher J_{sc} as well as V_{oc} (1, 2).

REFERENCES AND NOTES

(1) Ardo, S.; Meyer, G. J. Chem. Soc. Rev. 2009, 38, 115-164.

(2) Kuang, D.; Uchida, S.; Humphry-Baker, R.; Zakeeruddin, S. M.; Gratzel, M. Angew. Chem. Int.Ed. 2008, 47, 1923–1927.