Supporting Information for

Pyridine-Based Poly(aryleneethynylene)s: A Study on Anionic Side Chain Density and Their Influence on Optical Properties and Metallocromicity

Markus Bender,[†] Kai Seehafer,[†] Marlene Findt[†] and Uwe H. F. Bunz^{*,†,‡}

[†] Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany [‡]CAM, Centre for Advanced Materials, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 225, 69120 Heidelberg, Germany

uwe.bunz@oci.uni-heidelberg.de

Contents

1.	General Informations	2
2.	Synthetic Details and Analytical Data	5
3.	¹ H NMR Spectra	23
4.	UV/VIS Spectra	44
5.	Metall Sensing Data	44
6.	pH-Titration Data	44
7.	Evaluation of Stern-Volmer Constants	47
8.	Supplemental References	55

1. General Informations

Analytical thin layer chromatography (TLC) was performed on Macherey & Nagel Polygram[®] SIL G/UV254 precoated plastic sheets. Components were visualized by observation under UV light (254 nm or 365 nm) or in the case of UV-inactive substances by using the suitably coloring solutions. The following coloring solutions were used for the visualization of UV-inactive substances:

KMnO₄ solution: 2.0 g KMnO₄, 10.0 g K₂CO₃, 0.3 g NaOH, 200 mL distilled water.

Cer solution: 10.0 g Ce(SO)₄, 25 g phosphomolybdic acid hydrate, 1 L distilled water, 50 mL conc. H₂SO₄.

Flash column chromatography was carried out using silica gel S (0.032 mm-0.062 mm), purchased from Sigma Aldrich, according to G. Nill, unless otherwise stated.¹

Dialysis was realized with regenerated cellulose tubular membranes (ZelluTrans, Carl Roth[®]) with a molecular weight cut-off of 3500 Da against deionized (DI) water.

Melting points (m. p.) were determined in open glass capillaries on a Melting Point Apparatus MEL-TEMP (Electrothermal, Rochford, UK) and are not corrected.

¹H NMR spectra were recorded at room temperature on the following spectrometers: Bruker Avance III 300 (300 MHz), Bruker Avance III 400 (400 MHz) and Bruker Avance III 600 (600 MHz). The data were interpreted in first order spectra. The spectra were recorded in CDCl₃ or D₂O as indicated in each case. Chemical shifts are reported in δ units relative to the solvent residual peak (CHCl₃ in CDCl₃ at $\delta_H = 7.27$ ppm, HDO in D₂O at $\delta_H = 4.79$ ppm) or TMS ($\delta_H = 0.00$ ppm).² The following abbreviations are used to indicate the signal multiplicity: s (singlet), d (doublet), t (triplet), q (quartet), quin (quintet), sext (sextet), dd (doublet of doublet), dt (doublet of triplet), ddd (doublet of doublet of doublet), etc., bs (broad signal), m (multiplet). All NMR spectra were integrated and processed using ACD/Spectrus Processor. ¹³C NMR spectra were recorded at room temperature on the following spectrometers: Bruker Avance III 300 (75 MHz), Bruker Avance III 400 (100 MHz) and Bruker Avance III 600 (150 MHz). The spectra were recorded in CDCl₃ or D₂O as indicated in each case. Chemical shifts are reported in δ units relative to the solvent signal: CDCl₃ [$\delta_C = 77.16$ ppm (central line of the triplet)] or TMS ($\delta_C = 0.00$ ppm).

High resolution mass spectra (HR-MS) were either recorded on a Bruker ApexQehybrid 9.4 T FT-ICR-MS (ESI⁺, DART⁺), a Finnigan LCQ (ESI⁺) or a JEOL JMS-700 (EI⁺) mass spectrometer at the Organisch-Chemisches Institut der Universität Heidelberg.

IR spectra were recorded on a JASCO FT/IR-4100. Substances were applied as a film, solid or in solution. The obtained data was processed with the software JASCO Spectra Manager[™] II.

Elemental analyses were carried out at the Organisch-Chemisches Institut der Universität Heidelberg.

Used **buffer solutions:** pH 1 (HCl/KCl), pH 2 (KH phthalate/HCl), pH 3 (citric acid/NaOH/NaCl), pH 4 (citric acid/NaOH/NaCl), pH 5 (citric acid/NaOH), pH 6 (citric acid/NaOH), pH 8 (borax/HCl), pH 9 (KH phthalate/NaOH), pH 10 (borax/NaOH), pH 11 (boric acid/NaOH/KCl), pH 12 (Na₂HPO₄/NaOH), pH 13 (glycine/NaOH/NaCl). All commercially available at Sigma Aldrich. Buffer pH 7 [PIPES (c = 0.05 M)/KClO₄ (c = 0.1 M)] was made with PIPES (1,4-piperazinediethanesulfonic acid) commercially available at Sigma Aldrich.

Gel Permeation Chromatography (GPC): Number- (M_n) and weight-average (M_w) molecular weights and polydispersities (PDI, M_w/M_n) were determined by GPC versus polystyrene standards. Measurements were carried out at room temperature in chloroform with PSS-SDV columns (8.0 mm x 30.0 mm, 5 µm particles, 10²-, 10³- and 10⁵- Å pore size) on a Jasco PU-2050 GPC unit equipped with a Jasco UV-2075 UV- and a Jasco RI-2031 RI-detector.

All **absorption and emission spectra** were recorded using a Jasco V660 and Jasco FP6500 spectrometer.

Pictures were taken with a Canon EOS 7D camera equipped with an EF-S 60mm F/2.8 Macro lens.

Fluorescence lifetimes T were acquired by an exponential fit according to the least mean square with commercially available software HORIBA Scientific Decay Data Analyses 6 (DAS6) version 6.4.4. The luminescence decays were recorded with a HORIBA Scientific Fluorocube single photon counting system operated with HORIBA Scientific DataStation version 2.2.

Quantum yields Φ were measured by using the comparative method with quinine sulfate in 0.1 N sulfuric acid as a reference ($\Phi = 0.54$) according to the literature.³

2. Synthetic Details and Analytical Data

Scheme 1. Route to PAEs 1

Compound 1 was synthesized according to the literature.⁴

Synthesis of 2. Compound 1 (350 mg, 1.03 mmol) was dissolved in a degassed mixture of THF/NEt₃ (2:1, 4 mL/2 mL). PdCl₂(PPh₃)₂ (36 mg, 52 µmol) and CuI (10 mg, 52 µmol) were added, then TMS-acetylene (370 µL, 2.60 mmol) was and dropwise and the resulting mixture was stirred for 6 h at 60 °C. Saturated aqueous NH₄Cl and CH₂Cl₂ were added, the aqueous layer was separated and extracted with CH₂Cl₂. The combined organic layers were dried over MgSO₄, filtered and concentrated in vacuo. The crude product was purified by flash chromatography on silica gel [petroleum ether/ethyl acetate (10/1)] to give compound **2** (380 mg, 1.02 mmol, 99%) as colorless solid (m. p. 77 °C). ¹H NMR (400 MHz, CDCl₃): δ = 8.29 (d, *J* = 1.6 Hz, 1 H), 7.16 (d, *J* = 1.6 Hz, 1 H), 4.70 (s, 2 H), 4.29 (q, *J* = 7.1 Hz, 2 H), 1.31 (t, *J* = 7.1 Hz, 3 H), 0.29 (s, 9 H), 0.26 (s, 9 H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 167.96,

155.04, 146.15, 133.38, 123.16, 120.21, 102.47, 101.03, 100.47, 99.28, 66.43, 61.78, 14.30, -0.11, -0.13 ppm. IR (cm⁻¹): v 2957, 2898, 2163, 1769, 1581, 1454, 1403, 1270, 1246, 1212, 1157, 1113, 1078, 1024, 996, 861, 835, 755, 697, 627, 594, 575, 543, 502, 485, 459, 417. HR-MS (DART⁺): m/z calcd. for C₃₈H₅₅N₂O₆Si₄⁺ 747.3132 [M₂+H]⁺; found 747.3188. C₁₉H₂₇NO₃Si₂ (373.60): calcd. C 61.08, H 7.28, N 3.75, found C 60.61, H 7.29, N 3.60.

Synthesis of 3. Compound **2** (380 mg, 1.02 mmol) was dissolved in a mixture of EtOH/CH₂Cl₂ (1:1, 10 mL/10 mL). K₂CO₃ (1.41 g, 10.2 mmol) was added and the resulting mixture was stirred for 1.5 d at ambient temperature. Water and CH₂Cl₂ were added, the aqueous layer was separated and extracted with CH₂Cl₂. The combined organic layers were dried over MgSO₄, filtered and concentrated in vacuo. The crude product was purified by flash chromatography on silica gel [petroleum ether/ethyl acetate (3/1)] to give compound **3** (122 mg, 0.53 mmol, 52%) as colorless solid (m. p. 122 °C). ¹H NMR (600 MHz, CDCl₃): δ = 8.34 (d, *J* = 1.5 Hz, 1 H), 7.18 (d, *J* = 1.4 Hz, 1 H), 4.74 (s, 2 H), 4.28 (q, *J* = 7.1 Hz, 2 H), 3.51 (s, 1 H), 3.30 (s, 1 H), 1.30 (t, *J* = 7.1 Hz, 3 H) ppm. ¹³C NMR (150 MHz, CDCl₃): δ = 167.77, 155.21, 146.08, 132.88, 122.58, 119.70, 83.86, 82.53, 79.83, 79.02, 65.99, 61.96, 14.26 ppm. IR (cm⁻¹): v 3249, 3167, 2982, 2107, 1753, 1582, 1541, 1465, 1455, 1409, 1382, 1297, 1242, 1213, 1143, 1097, 1059, 1013, 980, 905, 877, 861, 810, 754, 712, 695, 680, 626, 604, 557, 484, 473, 418. HR-MS (DART⁺): *m/z* calcd. for C₂₆H₂₃N₂O₆⁺ 459.1551 [M₂+H]⁺; found 459.1547. C₁₃H₁₁NO₃ (229.24): calcd. C 68.11, H 4.84, N 6.11, found C 67.93, H 5.03, N 5.93.

Scheme 4. Synthesis of PAE 1E

*Compound 1 was synthesized according to the literature.*⁴

Synthesis of PAE 1E. Monomer 1 (172 mg, 0.51 mmol) and monomer 3 (116 mg, 0.51 mmol) were dissolved in a mixture of degassed toluene/NEt₃ (1.5:1, 9 mL/6 mL). Pd(PPh₃)₄ (29 mg, 25 µmol) and CuI (4.8 mg, 25 µmol) were added and the mixture was stirred at 70 °C for 24 h. Saturated aqueous NH₄Cl and CH₂Cl₂ were added, the aqueous layer was separated and extracted with CH₂Cl₂. The combined organic layers were dried over MgSO₄, filtered and concentrated in vacuo. Two times, the crude product was dissolved in a small amount of CHCl₃ and slowly added to an excess of MeOH to give **PAE 1E** as orange solid (178 mg, 88%). The M_n was estimated to be 3.2 x 10³ with a PDI of 1.2. ¹H NMR (600 MHz, CDCl₃): δ = 8.17-8.60 (m, 1 H), 7.29-7.75 (m, 1 H), 4.63-5.05 (m, 2 H), 4.17-4.43 (m, 2 H), 1.23-1.29 (m, 3 H) ppm. IR (cm⁻¹): v 3060, 2979, 2931, 2364, 2194, 2159, 2033, 1746, 1577, 1560, 1532, 1478, 1434, 1401, 1296, 1194, 1111, 1096, 1061, 1018, 895, 857, 753, 694, 620, 589, 566, 542, 534, 518, 509, 499, 493, 485, 476, 466, 457, 453, 435, 426, 419, 407. Due to low solubility, ¹³C NMR spectrum could not be obtained.

Scheme 5. Synthesis of PAE 1

Synthesis of PAE 1. To a mixture of PAE 1E (70 mg, 0.34 mmol) and water (20 mL), NaOH (272 mg, 6.8 mmol) was added and the resulting mixture was stirred at 70 °C for 24 h. After

adjusting a pH of 7 (HCl) the aqueous mixture was dialyzed against DI H₂O for 3 d. Freezedrying gave **PAE 1** as spongy, dark orange solid (59 mg, 99%). The M_n and PDI result from **PAE 1E**. ¹H NMR (600 MHz, D₂O): δ 6.80-8.38 (m, 2 H), 3.81-3.88 (s, 2 H) ppm. IR (cm⁻¹): v 3361, 3243, 3007, 2852, 1606, 1481, 1393, 1357, 1322, 1275, 1229, 1204, 1093, 1048, 955, 911, 862, 806, 687, 621, 527, 476, 464, 432, 413. Due to low solubility, ¹³C NMR spectrum could not be obtained.

Scheme 6. Route to PAEs 2

Compound **4** *was synthesized according to the literature.*^{5,6}

Δ

Synthesis of 5. To a solution of compound 4 (1.13 g, 4.47 mmol) in DMF (20 mL), NaH (118 mg, 4.92 mmol) was added. After the hydrogen generation was finished, MeI (306 μ L, 4.92 mmol) was added and the resulting mixture was stirred for 3 h at ambient temperature. Water

5,68%

and CH₂Cl₂ were added, the aqueous layer was separated and extracted with CH₂Cl₂. The combined organic layers were dried over MgSO₄, filtered and concentrated in vacuo. The crude product was purified by flash chromatography on silica gel [petroleum ether/ethyl acetate (8/1)] to give compound **5** (812 mg, 3.04 mmol, 68%) as yellowish solid (m. p. 74-75 °C). ¹H NMR (600 MHz, CDCl₃): δ = 8.07 (d, *J* = 1.9 Hz, 1 H), 7.26 (d, *J* = 1.9 Hz, 1 H), 3.93 (s, 3 H) ppm. ¹³C NMR (150 MHz, CDCl₃): δ = 153.45, 141.96, 131.25, 121.68, 119.83, 56.65 ppm. IR (cm⁻¹): v 3063, 3045, 3001, 2943, 2857, 1772, 1754, 1557, 1539, 1462, 1441, 1412, 1387, 1304, 1270, 1251, 1199, 1186, 1175, 1111, 1055, 1003, 930, 904, 886, 862, 789, 742, 719, 684, 577, 502. HR-MS (ESI⁺): *m/z* calcd. for C₆H₆NO⁷⁹Br⁸¹Br⁺ 267.8790 [M+H]⁺; found 267.8796. C₆H₅NOBr₂ (266.92): calcd. C 27.00, H 1.89, N 5.25, Br 59.87, found C 27.24, H 2.01, N 5.27, Br 59.68.

Compound **6** was synthesized according to the literature.⁷

Synthesis of PAE 2E. Monomer 5 (200 mg, 0.75 mmol) and monomer 6 (248 mg, 0.75 mmol) were dissolved in a mixture of degassed toluene/NEt₃ (1.5:1, 15 mL/10 mL). Pd(PPh₃)₄ (43 mg, 37 μ mol) and CuI (7.0 mg, 37 μ mol) were added and the mixture was stirred at 80 °C for 3 d. Saturated aqueous NH₄Cl and CH₂Cl₂ were added, the aqueous layer was separated and extracted with CH₂Cl₂. The combined organic layers were dried over MgSO₄, filtered and concentrated in vacuo. Two times, the crude product was dissolved in a small amount of CHCl₃ and slowly added to an excess of pentene to give **PAE 2E** as dark orange solid (176 mg, 54%). The *M*_n was estimated to be 5.8 x 10³ with a PDI of 1.5. ¹H

NMR (600 MHz, CDCl₃): δ = 8.13-8.52 (m, 1 H), 7.31-7.73 (m, 2 H), 6.99-7.14 (m, 1 H), 3.78-4.92 (m, 8 H), 3.06-3.18 (m, 3 H), 1.29-1.41 (m, 6 H) ppm. IR (cm⁻¹): v 3407, 2979, 2938, 2605, 2499, 1750, 1733, 1578, 1503, 1444, 1394, 1265, 1238, 1180, 1071, 1017, 852, 807, 754, 694, 623, 610, 580, 541, 521, 495, 429, 424, 416, 409. Due to low solubility, ¹³C NMR spectrum could not be obtained.

Scheme 9. Synthesis of PAE 2

Synthesis of PAE 2. To a mixture of PAE 2E (100 mg, 0.23 mmol) and water (20 mL), NaOH (184 mg, 4.6 mmol) was added and the resulting mixture was stirred at 70 °C for 24 h. After adjusting a pH of 7 (HCl) the aqueous mixture was dialyzed against DI H₂O for 3 d. Freeze-drying gave PAE 2 as spongy, orange solid (86 mg, 99%). The M_n and PDI result from PAE 2E. ¹H NMR (600 MHz, D₂O): δ = 6.75-7.84 (m, 4 H), 3.01-3.20 (m, 7 H) ppm. IR (cm⁻¹): v 3208, 2925, 2868, 2211, 1584, 1505, 1397, 1327, 1245, 1119, 1053, 936, 666, 583, 449, 409. Due to low solubility, ¹³C NMR spectrum could not be obtained.

Scheme 10. Route to PAEs 3 and PAEs 4

Scheme 11. Synthesis of PAE 3E

Compound 1 was synthesized according to the literature.⁴

Compound **6** *was synthesized according to the literature.*⁷

Synthesis of PAE 3E. Monomer 1 (270 mg, 0.80 mmol) and monomer 6 (263 mg, 0.80 mmol) were dissolved in a mixture of degassed toluene/NEt₃ (2:1, 20 mL/10 mL). Pd(PPh₃)₄ (46 mg, 40 μ mol) and CuI (8.0 mg, 40 μ mol) were added and the mixture was stirred at 70 °C for 24 h. Saturated aqueous NH₄Cl and CH₂Cl₂ were added, the aqueous layer was separated and extracted with CH₂Cl₂. The combined organic layers were dried over MgSO₄, filtered and concentrated in vacuo. Two times, the crude product was dissolved in a small amount of CHCl₃ and slowly added to an excess of MeOH to give **PAE 3E** as a red solid (202 mg, 50%).

The M_n was estimated to be 5.8 x 10³ with a PDI of 1.5. ¹H NMR (600 MHz, CDCl₃): $\delta = 8.24-8.63$ (m, 1 H), 7.53-7.73 (m, 1 H), 7.32-7.48 (m, 1 H), 6.98-7.17 (m, 1 H), 4.70-4.91 (m, 2 H), 4.24-4.32 (m, 2 H), 3.57-3.67 (m, 4 H), 3.07-3.14 (m, 4 H), 1.34-1.45 (m, 9 H) ppm. IR (cm⁻¹): v 3365, 3038, 2979, 2941, 2738, 2623, 2604, 2531, 2497, 2208, 1748, 1622, 1579, 1505, 1464, 1439, 1396, 1282, 1072, 1026, 945, 895, 852, 804, 753, 721, 694, 622, 594, 541. Due to low solubility, ¹³C NMR spectrum could not be obtained.

Scheme 12. Synthesis of PAE 3

Synthesis of PAE 3. To a mixture of PAE 3E (100 mg, 0.20 mmol) and water (20 mL), NaOH (160 mg, 2.0 mmol) was added and the resulting mixture was stirred at 70 °C for 24 h. After adjusting a pH of 7 (HCl) the aqueous mixture was dialyzed against DI H₂O for 3 d. Freeze-drying gave PAE 3 as spongy, dark orange solid (72 mg, 85%). The M_n and PDI result from PAE 3E. ¹H NMR (600 MHz, D₂O): δ = 6.62-8.37 (m, 4 H), 3.00-3.96 (m, 6 H) ppm. IR (cm⁻¹): v 3396, 3220, 3059, 2926, 2877, 2650, 2203, 1726, 1604, 1588, 1504, 1402, 1282, 1191, 1064, 963, 915, 887, 465, 455, 444, 431, 417. Due to low solubility, ¹³C NMR spectrum could not be obtained

Scheme 13. Synthesis of 7

*Compound 1 was synthesized according to the literature.*⁴

Synthesis of 7. To a solution of 1 (3.00 g, 8.85 mmol) in mixture of THF/MeOH (2:1, 60 mL/30 mL) was added 2.5 N NaOH_{ag} (33 mL) and heated at 60 °C for 2 h. After cooling down to ambient temperature, the pH value was adjusted to 6.0. The solution was filtered and the solvent was removed under reduced pressure. The resulting white solid was solved in DMSO (30 mL) and TEA (5 mL), before diethyliminodiacetate (2.0 mL, 10.6 mmol) was added. The reaction was stirred for 2 d at room temperature. The solution was diluted with ethyl acetate, washed with H₂O and NaCl_{aq}. The organic layer was dried over MgSO₄, filtered and the solvent was evaporated in vacuo. The resulting yellow oil was purified by flash chromatography on silica gel [petroleum ether/ethyl acetate (1/1)] to give compound 7 (3.24) g, 6.72 mmol, 76%) as colorless solid (m. p. 100-102 °C). ¹H NMR (600 MHz, CDCl₃): $\delta =$ 8.11 (d, J = 1.9 Hz, 1 H), 7.39 (d, J = 1.9 Hz, 1 H), 4.88 (s, 2 H), 4.28 (s, 2 H), 4.19-4.25 (m, 4 H), 4.18 (s, 2 H), 1.25-1.30 (m, 6 H) ppm. ¹³C NMR (150 MHz, CDCl₃): $\delta = 168.44$, 168.30, 167.04, 151.74, 143.10, 130.99, 123.53, 119.66, 67.97, 62.18, 61.61, 49.74, 48.48, 14.10 ppm. IR (cm⁻¹): v 2964, 1736, 1665, 1561, 1546, 1475, 1450, 1417, 1398, 1372, 1351, 1299, 1271, 1248, 1214, 1190, 1124, 1088, 1051, 1024, 960, 867, 826, 743, 713, 687, 602, 576, 502, 425. HR-MS (EI⁺): m/z calcd. for $C_{15}H_{19}N_2O_6Br_2^+$ 482.5989 [M+H]⁺; found 482.9577. C₁₅H₁₈N₂O₆Br₂ (482.13): calcd. C 37.37, H 3.76, N 5.81, Br 33.15, found C 37.13, H 3.74, N 5.65, Br 32.96.

Scheme 14. Synthesis of PAE 4E

Compound 6 was synthesized according to the literature.⁷

Synthesis of PAE 4E. Monomer 6 (138 mg, 0.42 mmol) and monomer 7 (202 mg, 0.42 mmol) were dissolved in mixture of degassed toluene/NEt₃ (1.5:1, 8.4 mL/5.6 mL). Pd(PPh₃)₄ (24 mg, 21 µmol) CuI (4 mg, 21 µmol) were added and the mixture was stirred at 60 °C for 24 h. Water and CH₂Cl₂ were added, the aqueous layer was separated and extracted with CH₂Cl₂. The combined organic layers were dried over MgSO₄, filtered and concentrated in vacuo. Two times, the crude product was dissolved in a small amount of CH₂Cl₂ and slowly added to an excess of pentane. **PAE 4E** was purified by gel permeation chromatography (CHCl₃) to give an orange powder (152 mg, 53%). The M_n was estimated to be 6.6 x 10³ with a PDI of 2.6. ¹H NMR (600 MHz, CDCl₃): $\delta = 8.29-8.48$ (m, 1 H), 7.49-7.60 (m, 1 H), 6.99-7.22 (m, 2 H), 5.05-5.13 (m, 2 H), 4.69-4.80 (m, 4 H), 4.38-4.52 (m, 2 H), 4.27-4.35 (m, 4 H), 4.06-4.20 (m, 6 H), 1.24-1.36 (m, 9 H), 1.07-1.13 (m, 3 H) ppm. IR (cm⁻¹): v 2161, 1742, 1681, 1504, 1400, 1187, 1077, 1023, 861, 457, 434, 425, 414. Due to low solubility, ¹³C NMR spectrum could not be obtained.

Scheme 15. Synthesis of PAE 4

Synthesis of PAE 4. PAE 4E (70 mg, 0.10 mmol) was suspended in 2.5 N NaOH (2 mL) and refluxed at 50 °C for 24 h. After adjusting a pH of 7 (HCl) the aqueous mixture was dialyzed against DI H₂O for 3 d. Freeze-drying gave PAE 4 as fluffy, orange solid (58 mg, 90%). The M_n and PDI result from PAE 4E. ¹H NMR (600 MHz, D₂O): δ = 8.21-8.40 (m, 1 H), 7.62-7.74 (m, 1 H), 6.94-7.23 (m, 2 H), 4.96-5.21 (m, 2 H), 4.53-4.65 (m, 4 H), 3.93-4.12 (m, 4 H)

ppm. IR (cm⁻¹): v 2359, 1605, 1506, 1400, 1205, 1033, 868, 619, 486, 444, 418. Due to low solubility, ¹³C NMR spectrum could not be obtained.

Scheme 16. Route to PAEs 5

Scheme 17. Synthesis of PAE 5E

Synthesis of compound 5 see above.

Synthesis of 10 see below.

Synthesis of PAE 5E. Monomer 5 (130 mg, 0.49 mmol) and monomer 10 (300 mg, 0.49 mmol) were dissolved in a mixture of degassed toluene/NEt₃ (1.5:1, 9 mL/7 mL). Pd(PPh₃)₄ (28 mg, 24 μ mol) and CuI (4.5 mg, 24 μ mol) were added and the mixture was stirred at 80 °C for 24 h. Saturated aqueous NH₄Cl and CHCl₃ were added, the aqueous layer was separated and extracted with CHCl₃. The combined organic layers were dried over MgSO₄, filtered and concentrated in vacuo. Two times, the crude product was dissolved in a small amount of

CHCl₃ and slowly added to an excess of pentene to give **PAE 5E** as yellow/orange solid (318 mg, 90%). The M_n was estimated to be 1.1 x 10⁴ with a PDI of 1.9. ¹H NMR (600 MHz, CDCl₃): $\delta = 8.21$ -8.44 (m, 1 H), 7.47-7.71 (m, 1 H), 7.09-7.22 (m, 2 H), 4.68-5.01 (m, 4 H), 4.05-4.47 (m, 16 H), 3.91-4.03 (m, 3 H), 1.14-1.30 (m, 12 H) ppm. IR (cm⁻¹): v 3129, 2983, 2947, 2806, 1735, 1663, 1578, 1502, 1446, 1397, 1374, 1297, 1181, 1093, 1020, 969, 867, 747, 678, 667, 573, 514, 504. Due to low solubility, ¹³C NMR spectrum could not be obtained.

Scheme 18. Synthesis of PAE 5

Synthesis of PAE 5. To a mixture of PAE 5E (195 mg, 0.27 mmol) and water (40 mL), NaOH (216 mg, 5.4 mmol) was added and the resulting mixture was stirred at 70 °C for 3 d. After adjusting a pH of 7 (HCl) the aqueous mixture was dialyzed against DI H₂O for 3 d. Freeze-drying gave PAE 5 as spongy, yellow solid (187 mg, 99%). The M_n and PDI result from PAE 5E. ¹H NMR (600 MHz, CDCl₃): δ = 7.08-8.43 (m, 4 H), 4.93-5.07 (m, 2 H), 2.96-4.12 (m, 13 H) ppm. IR (cm⁻¹): v 3352, 1591, 1503, 1395, 1316, 1061, 972, 792, 720, 545, 448. Due to low solubility, ¹³C NMR spectrum could not be obtained.

Scheme 19. Route to PAEs 6 and PAEs 7

Scheme 20. Synthesis of 9

Compound 8 was synthesized according to the literature.⁸

Synthesis of 9. Compound 8 (2.00 g, 2.44 mmol) was dissolved in a degassed mixture of toluene/NEt₃ (2:1, 15 mL/7.5 mL). PdCl₂(PPh₃)₂ (86 mg, 122 µmol) and CuI (23 mg, 122 µmol) were added, then TMS-acetylene (867 µL, 2.60 mmol) was and dropwise and the resulting mixture was stirred for 2 d at room temperature. Saturated aqueous NH₄Cl and CH₂Cl₂ were added, the aqueous layer was separated and extracted with CH₂Cl₂. The combined organic layers were dried over MgSO₄, filtered and concentrated in vacuo. The crude product was purified by flash chromatography on silica gel [petroleum ether/ethyl acetate (5/2)] to give compound 9 (1.10 g, 1.45 mmol, 59%) as grizzly solid (m. p. 120 - 122 °C). ¹H NMR (400 MHz, CDCl₃): $\delta = 6.98$ (s, 2 H), 4.76 (s, 4 H), 4.39 (s, 4 H), 4.13-4.21 (m, 12 H), 1.19-1.27 (m, 12 H), 0.26 (s, 18 H) ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta = 168.81$, 168.79, 168.49, 153.51, 118.76, 114.82, 101.71, 99.97, 69.41, 61.87, 49.98, 48.75, 14.27, 14.26, -0.01 ppm. IR (cm⁻¹): v 2987, 2960, 2900, 2160, 2153, 1741, 1666, 1502, 1491, 1464, 1446, 1433, 1407, 1374, 1351, 1291, 1248, 1183, 1117, 1088, 1046, 1021, 1013, 973, 876, 858, 840, 762, 731, 704. HR-MS (DART⁺): m/z calcd. for $C_{36}H_{56}N_3O_{12}Si_2^+$ 778.3397 $[M+NH_4]^+$; found 778.3402. $C_{36}H_{52}N_2O_{12}Si_2$ (760.98): calcd. C 56.82, H 6.89, N 3.68; found C 56.80, H 6.59, N 3.54.

Scheme 21. Synthesis of 10

Synthesis of 10. Compound **9** (1.10 g, 1.45 mmol) was dissolved in a mixture of EtOH/CH₂Cl₂ (1:1, 15 mL/15 mL). K₂CO₃ (2.00 g, 14.5 mmol) was added and the resulting mixture was stirred for 16 h at ambient temperature. Water and CH₂Cl₂ were added, the aqueous layer was separated and extracted with CH₂Cl₂. The combined organic layers were dried over MgSO₄, filtered and concentrated in vacuo. The crude product was dissolved in CH₂Cl₂ and filtered again and concentrated in vacuo to give compound **10** (812 mg, 1.32 mmol, 91%) as yellowish solid (m. p. 190 °C decomposition). ¹H NMR (400 MHz, CDCl₃): δ = 7.03 (s, 2 H), 4.78 (s, 4 H), 4.34 (s, 4 H), 4.13-4.23 (m, 12 H), 3.34 (s, 2 H), 1.21-1.30 (m, 12 H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 168.85, 168.69, 168.31, 153.77, 118.78, 114.01, 83.81, 78.92, 69.18, 61.95, 61.55, 49.93, 48.64, 14.28, 14.25 ppm. IR (cm⁻¹): v 3242, 2982, 2942, 1743, 1658, 1506, 1472, 1431, 1403, 1373, 1354, 1311, 1292, 1274, 1249, 1193, 1118, 1094, 1046, 1022, 1010, 971, 927, 889, 872, 821, 796, 762, 731, 633. HR-MS (DART⁺): *m/z* calcd. for C₃₀H₄₀N₃O_{12⁺} 634.2607 [M+NH₄]⁺; found 634.2583. C₃₀H₃₆N₂O₁₂ (616.62): calcd. C 58.44, H 5.88, N 4.54, found C 57.94, H 5.84, N 4.50.

Scheme 22. Synthesis of PAE 6E

Compound 1 was synthesized according to the literature.⁴

Synthesis of PAE 6E. Monomer 1 (200 mg, 0.59 mmol) and monomer 10 (304 mg, 0.59 mmol) were dissolved in a mixture of degassed toluene/NEt₃ (1.5:1, 12 mL/8 mL). Pd(PPh₃)₄ (34 mg, 30 µmol) and CuI (5.7 mg, 30 µmol) were added and the mixture was stirred at 70 °C for 4 d. Saturated aqueous NH₄Cl and CH₂Cl₂ were added, the aqueous layer was separated and extracted with CH₂Cl₂. The combined organic layers were dried over MgSO₄, filtered and concentrated in vacuo. The residue was dissolved in CH₂Cl₂, filtered again and concentrated in vacuo. Two times, the crude product was dissolved in a small amount of CHCl₃ and slowly added to an excess of pentene to give **PAE 6E** as yellow solid (353 mg, 75%). The M_n was estimated to be 8.4 x 10³ with a PDI of 1.2. ¹H NMR (600 MHz, CDCl₃): δ = 8.26-8.52 (m, 1 H), 7.30-7.49 (m, 1 H), 7.00-7.23 (m, 2 H), 4.80-4.94 (m, 4 H), 4.07-4.51 (m, 20 H), 1.15-1.32 (m, 15 H) ppm. IR (cm⁻¹): v 2983, 2939, 2909, 2871, 1737, 1668, 1561, 1498, 1464, 1404, 1373, 1351, 1264, 1183, 1094, 1021, 970, 932, 909, 858, 830, 810, 788, 750, 721, 650, 588. Due to low solubility, ¹³C NMR spectrum could not be obtained.

Scheme 23. Synthesis of PAE 6

Synthesis of PAE 6. To a mixture of PAE 6E (100 mg, 0.13 mmol) and water (20 mL), NaOH (104 mg, 2.6 mmol) was added and the resulting mixture was stirred at 70 °C for 1 d. After adjusting a pH of 7 (HCl) the aqueous mixture was dialyzed against DI H₂O for 3 d. Freeze-drying gave PAE 6 as spongy, orange solid (59 mg, 60%). The M_n and PDI result from PAE 6E. ¹H NMR (600 MHz, D₂O): δ = 6.85-8.37 (m, 4 H), 4.86-5.03 (m, 2 H), 3.89-4.36 (m, 12 H) ppm. IR (cm⁻¹): v 3399, 3065, 2947, 2643, 1722, 1651, 1607, 1498, 1401, 1320, 1187, 1087, 1044, 971, 884, 792, 579, 458, 411. Due to low solubility, ¹³C NMR spectrum could not be obtained

Scheme 24. Synthesis of PAE 7E

Synthesis of PAE 7E. Monomer 7 (250 mg, 0.52 mmol) and monomer 10 (320 mg, 0.52 mmol) were dissolved in a mixture of degassed toluene/NEt₃ (1.5:1, 9 mL/7 mL). $Pd(PPh_3)_4$

(30 mg, 26 µmol) and CuI (5.0 mg, 26 µmol) were added and the mixture was stirred at 70 °C for 2 d. Saturated aqueous NH₄Cl and CH₂Cl₂ were added, the aqueous layer was separated and extracted with CH₂Cl₂. The combined organic layers were dried over MgSO₄, filtered and concentrated in vacuo. The residue was dissolved in CH₂Cl₂, filtered again and concentrated in vacuo. Two times, the crude product was dissolved in a small amount of CH₂Cl₂ and slowly added to an excess of pentene to give **PAE 7E** as yellow solid (256 mg, 51%). The M_n was estimated to be 1.1 x 10⁴ with a PDI of 1.5. ¹H NMR (600 MHz, CDCl₃): δ = 8.28-8.47 (m, 1 H), 7.46-7.60 (m, 1 H), 7.02-7.24 (m, 2 H), 4.75-5.12 (m, 6 H), 4.06-4.45 (m, 24 H), 1.10-1.32 (m, 18 H) ppm. IR (cm⁻¹): v 2983, 2939, 2905, 2875, 1738, 1661, 1575, 1560, 1503, 1464, 1402, 1373, 1352, 1260, 1094, 1021, 970, 863, 752, 698, 651, 623, 589, 520. Due to low solubility, ¹³C NMR spectrum could not be obtained.

Synthesis of PAE 7. To a mixture of PAE 7E (100 mg, 0.11 mmol) and water (20 mL), NaOH (88 mg, 2.2 mmol) was added and the resulting mixture was stirred at 70 °C for 2 d. After adjusting a pH of 7 (HCl) the aqueous mixture was dialyzed against DI H₂O for 3 d. Freeze-drying gave PAE 7 as spongy, orange solid (77 mg, 91%). The M_n and PDI result from PAE 7E. ¹H NMR (600 MHz, D₂O): δ = 8.22-8.30 (m, 1 H), 7.63-7.75 (m, 1 H), 7.04-7.33 (m, 2 H), 4.95-5.10 (m, 4 H), 3.96-4.14 (m, 14 H) ppm. IR (cm⁻¹): v 3384, 3263, 3068, 2996, 2950, 2643, 1715, 1642, 1598, 1502, 1478, 1396, 1319, 1294, 1193, 1140, 1091, 1038,

974, 915, 877, 844, 658, 548, 519, 457, 428, 413 Due to low solubility, ¹³C NMR spectrum could not be obtained.

3. ¹H NMR Spectra

Na ⁺ O ⁻ >=O				Current Data	a Parameters e150505ubmb.31
				EXPNO	2
				PROCNO	1
				F2 - Acquisition Parameters	
· ─N				Date	20150505
PAE 1				Time	13.01
				INSTRUM	spect
				PROBHD	Z132808_0001 (
				PULPROG	zg30
Λ				TD	131072
				SOLVENT	D_2O
				NS	128
				DS	2
				SWH	18028.846 Hz
				FIDRES	0.137549 Hz
				AQ	3.6350634 sec
				RG	18.85
				DW	27.733 usec
				DE	12.00 usec
				TE	295.0 K
\wedge / /				D1	0.10000000 sec
				TD0	16
				===== CH/	ANNEL f1 =====
				NUC1	1H
				P1	7.63 usec
8.0 7.5 Chemical Shift (ppm) 3.845 3.840 Chemical Shift (ppm)				PLW1	7.5000000 W
				SFO1	600.2468302MHz
				F2 - Process	ing parameters
				SI	65536
				SF	600.2438290 MHz
				WDW	EM
	Lulland	~		SSB	0
2.00	2.02			LB	0.30 Hz
	 	*****	****	GB	0
8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0	4.5 4.0 3.5	3.0 2.5 2.0	1.5 1.0 Chemical Shift (ppm)	PC	1.00

				Current Dat NAME EXPNO PROCNO	a Parameters e150408ubmb.143 2 1
$\left[\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$					itian Daramatara
+O				F2 - Acquis	20150408
				Time	20130400
Ő					spect
					7132808 0001 (
					Z 132000_0001 (za30
					131072
				SOLVENT	D ₀ O
				NS	128
				ns	2
				SWH	- 18028 846 Hz
				FIDRES	0.137549 Hz
				AQ	3.6350634 sec
				RG	18.85
				DW	27.733 usec
				DE	12.00 usec
				TE	295.0 K
				D1	0.10000000 sec
				TD0	16
					ANNEL II =====
					7.03 USEC
				SEO1	600 2468302 MHz
				5101	000.2400302 10112
				F2 - Proces	sing parameters
				SI	65536
				SF	600.2438290 MHz
				WDW	EM
		r	\	SSB	0
4.00		7.26		LB	0.30 Hz
		ц. 		GB	0
8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0	4.5 4.0 3.	5 3.0 2	.5 2.0 1.5	1.0 Chemical Shift (ppm) PC	1.00

4. UV/VIS Spectra

Normalized UV/VIS spectra of the unsaponified polymer precursors is shown in the graphic below.

5. Metall Sensing Data

The picture below shows PAEs 1-7 in H₂O (c = 5 μ g/mL) with different metal cations (added as perchlorates and CuI) under a hand-held black light with illumination at 365 nm. Since solely Pb²⁺ and Hg²⁺ show quenching effects for all synthesized PAEs, we choosed these cases for a detailed Stern-Volmer analysis.

6. pH-Titrations

All titrations were performed in buffer solutions as stated above. Under a) the corresponding photographs of the resulting solutions ($c(PAE) = 2.5 \ \mu g/mL$) illuminated under a hand-held blacklight at 365 nm are shown. The corresponding normalized absorption and emission spectra are shown under b). The molecular structure belonging to the measurements is shown on the right.

7. Evaluation of Stern-Volmer Constants

All metal titrations were performed at pH 7 in PIPES buffer (c = 0.050 M) and KClO₄ (c = 0.1 M). The gathered emission data is shown in the inset of the following graphs. The fitting was done using a modified Stern-Volmer equation, by either using the decreasing peak height or the decreasing peak area under the emission curve.

$$I_q = I_0 + \frac{I_{final} - I_0}{2} \times \left\{ 1 + \frac{[Q]}{[F]} + \frac{1}{K_{SV}[F]} - \left[\left(1 + \frac{[Q]}{[F]} + \frac{1}{K_{SV}[F]}\right)^2 - 4\frac{[Q]}{[F]} \right]^{1/2} \right\}$$

 I_0 = initial fluorescence intensity of the fluorophore

 I_{final} = final fluorescence intensity of the fluorophore

 I_q = fluorescence intensity by a given quencher concentration

[F] = concentration of the fluorophore

[Q] = concentration of the quencher

 $K_{\rm sv}$ = Stern-Volmer constant.

The emission data gathered during pH-titration was also fitted using the modified Stern-Volmer equation stated above. The obtained Stern-Volmer constants represent a roughly direction of the quenching behavior towards H⁺. Since there is a remarkably bathochromic shift in emission wavelength only the decreasing peak area under the emission curve was used for fitting. The analyzed emission data is shown in the inset of the following graphs.

8. Supplemental References

(1) G. Helmchen, G. Nill, D. Flockerzi, W. Schühle and M.S.K. Youssef, Angew. Chem. 1979, 91, 64-65; Angew. Chem. Int. Ed. Engl., 1979, 18, 62-63

(2) G. R. Fulmer, A. J. Miller, N. H. Sherden, H. E. Gottlieb, A. Nudelman, B. M. Stoltz, J. E. Bercaw and K. I. Goldberg, *Organometallics*, 2010, **29**, 2176-2179

- (3) W. Melhuish, J. Phys. Chem., 1961, 65, 229-235.
- (4) K. Seehafer, M. Bender and U. H. Bunz, Macromolecules, 2014, 47, 922-927.

(5) D. J. Haydon, J. M. Bennett, D. Brown, I. Collins, G. Galbraith, P. Lancett, R. Macdonald, N. R. Stokes, P. K. Chauhan and J. K. Sutariya, *J. Med. Chem.*, **2010**, *53*, 3927-3936.

(6) A. H. Berrie, G. T. Gewbold and F. S. Spring, J. Chem. Soc., 1952, 2042-2046.

(7) I.-B. Kim, A. Dunkhorst, J. Gilbert and U. H. Bunz, Macromolecules, 2005, 38, 4560-4562.

(8) I.-B. Kim, R. Phillips and U. H. Bunz, Macromolecules, 2007, 40, 5290-5293.