Supporting Information for

Pyridine-Based Poly(aryleneethynylene)s: A Study on Anionic Side Chain Density and Their Influence on Optical Properties and Metallocromicity

Markus Bender, ${ }^{\dagger}$ Kai Seehafer, ${ }^{\dagger}$ Marlene Findt ${ }^{\dagger}$ and Uwe H. F. Bunz ${ }^{*}, \uparrow, \dagger$
${ }^{\dagger}$ Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany \#CAM, Centre for Advanced Materials, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 225, 69120 Heidelberg, Germany

Contents

1. General Informations 2
2. Synthetic Details and Analytical Data 5
3. ${ }^{1}$ H NMR Spectra 23
4. UV/VIS Spectra 44
5. Metall Sensing Data 44
6. pH -Titration Data 44
7. Evaluation of Stern-Volmer Constants 47
8. Supplemental References 55

1. General Informations

Analytical thin layer chromatography (TLC) was performed on Macherey \& Nagel Polygram ${ }^{\circledR}$ SIL G/UV254 precoated plastic sheets. Components were visualized by observation under UV light (254 nm or 365 nm) or in the case of UV-inactive substances by using the suitably coloring solutions. The following coloring solutions were used for the visualization of UV-inactive substances:
KMnO_{4} solution: $2.0 \mathrm{~g} \mathrm{KMnO}_{4}, 10.0 \mathrm{~g} \mathrm{~K}_{2} \mathrm{CO}_{3}, 0.3 \mathrm{~g} \mathrm{NaOH}, 200 \mathrm{~mL}$ distilled water.
Cer solution: $10.0 \mathrm{~g} \mathrm{Ce}(\mathrm{SO})_{4}, 25 \mathrm{~g}$ phosphomolybdic acid hydrate, 1 L distilled water, 50 mL conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$.

Flash column chromatography was carried out using silica gel $\mathrm{S}(0.032 \mathrm{~mm}-0.062 \mathrm{~mm})$, purchased from Sigma Aldrich, according to G. Nill, unless otherwise stated. ${ }^{1}$

Dialysis was realized with regenerated cellulose tubular membranes (ZelluTrans, Carl Roth ${ }^{\circledR}$) with a molecular weight cut-off of 3500 Da against deionized (DI) water.

Melting points (m. p.) were determined in open glass capillaries on a Melting Point Apparatus MEL-TEMP (Electrothermal, Rochford, UK) and are not corrected.
${ }^{1}$ H NMR spectra were recorded at room temperature on the following spectrometers: Bruker Avance III 300 (300 MHz), Bruker Avance III 400 (400 MHz) and Bruker Avance III $600(600 \mathrm{MHz})$. The data were interpreted in first order spectra. The spectra were recorded in CDCl_{3} or $\mathrm{D}_{2} \mathrm{O}$ as indicated in each case. Chemical shifts are reported in δ units relative to the solvent residual peak $\left(\mathrm{CHCl}_{3}\right.$ in CDCl_{3} at $\delta_{\mathrm{H}}=7.27 \mathrm{ppm}, \mathrm{HDO}$ in $\mathrm{D}_{2} \mathrm{O}$ at $\left.\delta_{\mathrm{H}}=4.79 \mathrm{ppm}\right)$ or TMS $\left(\delta_{\mathrm{H}}=0.00 \mathrm{ppm}\right) .{ }^{2}$ The following abbreviations are used to indicate the signal multiplicity: s (singlet), d (doublet), t (triplet), q (quartet), quin (quintet), sext (sextet), dd (doublet of doublet), dt (doublet of triplet), ddd (doublet of doublet of doublet), etc., bs (broad signal), m (multiplet). All NMR spectra were integrated and processed using ACD/Spectrus Processor.
${ }^{13}$ C NMR spectra were recorded at room temperature on the following spectrometers: Bruker Avance III 300 (75 MHz), Bruker Avance III 400 (100 MHz) and Bruker Avance III $600(150 \mathrm{MHz})$. The spectra were recorded in CDCl_{3} or $\mathrm{D}_{2} \mathrm{O}$ as indicated in each case. Chemical shifts are reported in δ units relative to the solvent signal: $\mathrm{CDCl}_{3}\left[\delta_{\mathrm{C}}=77.16 \mathrm{ppm}\right.$ (central line of the triplet)] or TMS $\left(\delta_{\mathrm{C}}=0.00 \mathrm{ppm}\right)$.

High resolution mass spectra (HR-MS) were either recorded on a Bruker ApexQehybrid 9.4 T FT-ICR-MS (ESI ${ }^{+}$, DART^{+}), a Finnigan LCQ (ESI $)$or a JEOL JMS-700 $\left(\mathrm{EI}^{+}\right)$mass spectrometer at the Organisch-Chemisches Institut der Universität Heidelberg.

IR spectra were recorded on a JASCO FT/IR-4100. Substances were applied as a film, solid or in solution. The obtained data was processed with the software JASCO Spectra Manager ${ }^{\text {TM }}$ II.

Elemental analyses were carried out at the Organisch-Chemisches Institut der Universität Heidelberg.

Used buffer solutions: $\mathrm{pH} 1(\mathrm{HCl} / \mathrm{KCl}), \mathrm{pH} 2(\mathrm{KH}$ phthalate $/ \mathrm{HCl})$, pH 3 (citric acid $/ \mathrm{NaOH} / \mathrm{NaCl}$), pH 4 (citric acid/ $\mathrm{NaOH} / \mathrm{NaCl}$), pH 5 (citric acid $/ \mathrm{NaOH}$), pH 6 (citric acid/ NaOH), , pH 8 (borax/HCl), pH 9 (KH phthalate/NaOH), pH 10 (borax/NaOH), pH 11 (boric acid/ $\mathrm{NaOH} / \mathrm{KCl}$), pH $12\left(\mathrm{Na}_{2} \mathrm{HPO}_{4} / \mathrm{NaOH}\right)$, pH 13 (glycine/ $\mathrm{NaOH} / \mathrm{NaCl}$). All commercially available at Sigma Aldrich. Buffer pH 7 [PIPES (c $=0.05 \mathrm{M}$) $/ \mathrm{KClO}_{4}$ $(c=0.1 \mathrm{M})$] was made with PIPES (1,4-piperazinediethanesulfonic acid) commercially available at Sigma Aldrich.

Gel Permeation Chromatography (GPC): Number- $\left(M_{\mathrm{n}}\right)$ and weight-average $\left(M_{\mathrm{w}}\right)$ molecular weights and polydispersities (PDI, $M_{\mathrm{w}} / M_{\mathrm{n}}$) were determined by GPC versus polystyrene standards. Measurements were carried out at room temperature in chloroform with PSS-SDV columns ($8.0 \mathrm{~mm} \times 30.0 \mathrm{~mm}, 5 \mu \mathrm{~m}$ particles, $10^{2}-, 10^{3}$ - and $10^{5}-\AA$ pore size $)$ on a Jasco PU-2050 GPC unit equipped with a Jasco UV-2075 UV- and a Jasco RI-2031 RIdetector.

All absorption and emission spectra were recorded using a Jasco V660 and Jasco FP6500 spectrometer.

Pictures were taken with a Canon EOS 7D camera equipped with an EF-S 60 mm F/2.8 Macro lens.

Fluorescence lifetimes $\mathbf{~}$ were acquired by an exponential fit according to the least mean square with commercially available software HORIBA Scientific Decay Data Analyses 6 (DAS6) version 6.4.4. The luminescence decays were recorded with a HORIBA Scientific Fluorocube single photon counting system operated with HORIBA Scientific DataStation version 2.2.

Quantum yields $\boldsymbol{\Phi}$ were measured by using the comparative method with quinine sulfate in 0.1 N sulfuric acid as a reference $(\Phi=0.54)$ according to the literature. ${ }^{3}$

2. Synthetic Details and Analytical Data

Scheme 1. Route to PAEs 1

Scheme 2. Synthesis of 2

Compound 1 was synthesized according to the literature. ${ }^{4}$
Synthesis of 2. Compound $1(350 \mathrm{mg}, 1.03 \mathrm{mmol})$ was dissolved in a degassed mixture of THF/NEt ${ }_{3}(2: 1,4 \mathrm{~mL} / 2 \mathrm{~mL}) . \mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(36 \mathrm{mg}, 52 \mu \mathrm{~mol})$ and $\mathrm{CuI}(10 \mathrm{mg}, 52 \mu \mathrm{~mol})$ were added, then TMS-acetylene ($370 \mu \mathrm{~L}, 2.60 \mathrm{mmol}$) was and dropwise and the resulting mixture was stirred for 6 h at $60^{\circ} \mathrm{C}$. Saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ were added, the aqueous layer was separated and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were dried over MgSO_{4}, filtered and concentrated in vacuo. The crude product was purified by flash chromatography on silica gel [petroleum ether/ethyl acetate (10/1)] to give compound 2 (380 $\mathrm{mg}, 1.02 \mathrm{mmol}, 99 \%$) as colorless solid (m. p. $77{ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.29$ (d, $J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.16(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.70(\mathrm{~s}, 2 \mathrm{H}), 4.29(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.31(\mathrm{t}$, $J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.29(\mathrm{~s}, 9 \mathrm{H}), 0.26(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=167.96$,
$155.04,146.15,133.38,123.16,120.21,102.47,101.03,100.47,99.28,66.43,61.78,14.30,-$ $0.11,-0.13 \mathrm{ppm} . \mathrm{IR}\left(\mathrm{cm}^{-1}\right):$ v 2957, 2898, 2163, 1769, 1581, 1454, 1403, 1270, 1246,1212 , $1157,1113,1078,1024,996,861,835,755,697,627,594,575,543,502,485,459,417$. HRMS (DART ${ }^{+}$): m / z calcd. for $\mathrm{C}_{38} \mathrm{H}_{55} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{Si}_{4}{ }^{+} 747.3132\left[\mathrm{M}_{2}+\mathrm{H}\right]^{+}$; found 747.3188. $\mathrm{C}_{19} \mathrm{H}_{27} \mathrm{NO}_{3} \mathrm{Si}_{2}$ (373.60): calcd. C 61.08, H 7.28, N 3.75, found C $60.61, \mathrm{H} 7.29, \mathrm{~N} 3.60$.

Scheme 3. Synthesis of 3

Synthesis of 3. Compound $2(380 \mathrm{mg}, 1.02 \mathrm{mmol})$ was dissolved in a mixture of $\mathrm{EtOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}(1: 1,10 \mathrm{~mL} / 10 \mathrm{~mL}) . \mathrm{K}_{2} \mathrm{CO}_{3}(1.41 \mathrm{~g}, 10.2 \mathrm{mmol})$ was added and the resulting mixture was stirred for 1.5 d at ambient temperature. Water and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ were added, the aqueous layer was separated and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were dried over MgSO_{4}, filtered and concentrated in vacuo. The crude product was purified by flash chromatography on silica gel [petroleum ether/ethyl acetate (3/1)] to give compound 3 $(122 \mathrm{mg}, 0.53 \mathrm{mmol}, 52 \%)$ as colorless solid (m. p. $122^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=$ $8.34(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.74(\mathrm{~s}, 2 \mathrm{H}), 4.28(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H})$, $3.51(\mathrm{~s}, 1 \mathrm{H}), 3.30(\mathrm{~s}, 1 \mathrm{H}), 1.30(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=$ 167.77, 155.21, 146.08, 132.88, 122.58, 119.70, 83.86, 82.53, 79.83, 79.02, 65.99, 61.96, 14.26 ppm. IR $\left(\mathrm{cm}^{-1}\right):$ v $3249,3167,2982,2107,1753,1582,1541,1465,1455,1409,1382$, $1297,1242,1213,1143,1097,1059,1013,980,905,877,861,810,754,712,695,680,626$, 604, 557, 484, 473, 418. HR-MS (DART ${ }^{+}$): m / z calcd. for $\mathrm{C}_{26} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{6}{ }^{+} 459.1551\left[\mathrm{M}_{2}+\mathrm{H}\right]^{+}$; found 459.1547. $\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{NO}_{3}$ (229.24): calcd. C 68.11, H 4.84, N 6.11, found C 67.93, H 5.03, N 5.93.

Scheme 4. Synthesis of PAE 1E

Compound $\mathbf{1}$ was synthesized according to the literature. ${ }^{4}$
Synthesis of PAE 1E. Monomer $\mathbf{1}(172 \mathrm{mg}, 0.51 \mathrm{mmol})$ and monomer $\mathbf{3}(116 \mathrm{mg}, 0.51$ $\mathrm{mmol})$ were dissolved in a mixture of degassed toluene $/ \mathrm{NEt}_{3}(1.5: 1,9 \mathrm{~mL} / 6 \mathrm{~mL}) . \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ $(29 \mathrm{mg}, 25 \mu \mathrm{~mol})$ and $\mathrm{CuI}(4.8 \mathrm{mg}, 25 \mu \mathrm{~mol})$ were added and the mixture was stirred at $70^{\circ} \mathrm{C}$ for 24 h . Saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ were added, the aqueous layer was separated and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were dried over MgSO_{4}, filtered and concentrated in vacuo. Two times, the crude product was dissolved in a small amount of CHCl_{3} and slowly added to an excess of MeOH to give PAE 1E as orange solid $(178 \mathrm{mg}$, $88 \%)$. The M_{n} was estimated to be 3.2×10^{3} with a PDI of $1.2 .{ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $=8.17-8.60(\mathrm{~m}, 1 \mathrm{H}), 7.29-7.75(\mathrm{~m}, 1 \mathrm{H}), 4.63-5.05(\mathrm{~m}, 2 \mathrm{H}), 4.17-4.43(\mathrm{~m}, 2 \mathrm{H}), 1.23-1.29$ (m, 3 H) ppm. IR (cm^{-1}): v 3060, 2979, 2931, 2364, 2194, 2159, 2033, 1746, 1577, 1560, $1532,1478,1434,1401,1296,1194,1111,1096,1061,1018,895,857,753,694,620,589$, $566,542,534,518,509,499,493,485,476,466,457,453,435,426,419,407$. Due to low solubility, ${ }^{13} \mathrm{C}$ NMR spectrum could not be obtained.

Scheme 5. Synthesis of PAE 1

Synthesis of PAE 1. To a mixture of PAE 1E ($70 \mathrm{mg}, 0.34 \mathrm{mmol}$) and water (20 mL), NaOH ($272 \mathrm{mg}, 6.8 \mathrm{mmol}$) was added and the resulting mixture was stirred at $70^{\circ} \mathrm{C}$ for 24 h . After
adjusting a pH of $7(\mathrm{HCl})$ the aqueous mixture was dialyzed against DI $\mathrm{H}_{2} \mathrm{O}$ for 3 d . Freezedrying gave PAE 1 as spongy, dark orange solid ($59 \mathrm{mg}, 99 \%$). The M_{n} and PDI result from PAE 1E. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$): $\delta 6.80-8.38(\mathrm{~m}, 2 \mathrm{H}), 3.81-3.88(\mathrm{~s}, 2 \mathrm{H}) \mathrm{ppm}$. IR $\left(\mathrm{cm}^{-1}\right)$: $v 3361,3243,3007,2852,1606,1481,1393,1357,1322,1275,1229,1204,1093,1048,955$, $911,862,806,687,621,527,476,464,432,413$. Due to low solubility, ${ }^{13} \mathrm{C}$ NMR spectrum could not be obtained.

Scheme 6. Route to PAEs 2

Scheme 7. Synthesis of 5

4

$\mathrm{rt}, 3 \mathrm{~h}$

5, 68\%

Compound $\mathbf{4}$ was synthesized according to the literature., ${ }^{\text {5,6 }}$
Synthesis of 5. To a solution of compound $\mathbf{4}(1.13 \mathrm{~g}, 4.47 \mathrm{mmol})$ in DMF (20 mL), NaH (118 $\mathrm{mg}, 4.92 \mathrm{mmol}$) was added. After the hydrogen generation was finished, MeI ($306 \mu \mathrm{~L}, 4.92$ mmol) was added and the resulting mixture was stirred for 3 h at ambient temperature. Water
and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ were added, the aqueous layer was separated and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were dried over MgSO_{4}, filtered and concentrated in vacuo. The crude product was purified by flash chromatography on silica gel [petroleum ether/ethyl acetate $(8 / 1)$] to give compound $5(812 \mathrm{mg}, 3.04 \mathrm{mmol}, 68 \%)$ as yellowish solid (m. p. 74-75 $\left.{ }^{\circ} \mathrm{C}\right) .{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.07(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.26(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H})$, 3.93 (s, 3 H) ppm. ${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=153.45,141.96,131.25,121.68,119.83$, $56.65 \mathrm{ppm} . \operatorname{IR}\left(\mathrm{cm}^{-1}\right): ~ v 3063,3045,3001,2943,2857,1772,1754,1557,1539,1462,1441$, $1412,1387,1304,1270,1251,1199,1186,1175,1111,1055,1003,930,904,886,862,789$, 742, 719, 684, 577, 502. HR-MS (ESI $): m / z$ calcd. for $\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{NO}^{79} \mathrm{Br}^{81} \mathrm{Br}^{+} 267.8790[\mathrm{M}+\mathrm{H}]^{+}$; found 267.8796. $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NOBr}_{2}$ (266.92): calcd. C 27.00 , H 1.89, N 5.25 , Br 59.87 , found C 27.24, H 2.01, N 5.27, Br 59.68.

Scheme 8. Synthesis of PAE 2E

5

 $80^{\circ} \mathrm{C}, 3 \mathrm{~d}$

Compound $\mathbf{6}$ was synthesized according to the literature. ${ }^{7}$
Synthesis of PAE 2E. Monomer $5(200 \mathrm{mg}, 0.75 \mathrm{mmol})$ and monomer $6(248 \mathrm{mg}, 0.75$ $\mathrm{mmol})$ were dissolved in a mixture of degassed toluene $/ \mathrm{NEt}_{3}(1.5: 1,15 \mathrm{~mL} / 10 \mathrm{~mL})$. $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(43 \mathrm{mg}, 37 \mu \mathrm{~mol})$ and $\mathrm{CuI}(7.0 \mathrm{mg}, 37 \mu \mathrm{~mol})$ were added and the mixture was stirred at $80^{\circ} \mathrm{C}$ for 3 d . Saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ were added, the aqueous layer was separated and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were dried over MgSO_{4}, filtered and concentrated in vacuo. Two times, the crude product was dissolved in a small amount of CHCl_{3} and slowly added to an excess of pentene to give PAE 2E as dark orange solid ($176 \mathrm{mg}, 54 \%$). The M_{n} was estimated to be 5.8×10^{3} with a PDI of $1.5 .{ }^{1} \mathrm{H}$

NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.13-8.52(\mathrm{~m}, 1 \mathrm{H}), 7.31-7.73(\mathrm{~m}, 2 \mathrm{H}), 6.99-7.14(\mathrm{~m}, 1 \mathrm{H})$, 3.78-4.92 (m, 8 H), 3.06-3.18 (m, 3 H), 1.29-1.41 (m, 6 H$) \mathrm{ppm}$. IR $\left(\mathrm{cm}^{-1}\right): v 3407$, 2979, 2938, 2605, 2499, 1750, 1733, 1578, 1503, 1444, 1394, 1265, 1238, 1180, 1071, 1017, 852, $807,754,694,623,610,580,541,521,495,429,424,416,409$. Due to low solubility, ${ }^{13} \mathrm{C}$ NMR spectrum could not be obtained.

Scheme 9. Synthesis of PAE 2

Synthesis of PAE 2. To a mixture of PAE 2E ($100 \mathrm{mg}, 0.23 \mathrm{mmol}$) and water (20 mL), $\mathrm{NaOH}(184 \mathrm{mg}, 4.6 \mathrm{mmol})$ was added and the resulting mixture was stirred at $70^{\circ} \mathrm{C}$ for 24 h . After adjusting a pH of $7(\mathrm{HCl})$ the aqueous mixture was dialyzed against DI $\mathrm{H}_{2} \mathrm{O}$ for 3 d . Freeze-drying gave PAE 2 as spongy, orange solid ($86 \mathrm{mg}, 99 \%$). The M_{n} and PDI result from PAE 2E. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$): $\delta=6.75-7.84(\mathrm{~m}, 4 \mathrm{H}), 3.01-3.20(\mathrm{~m}, 7 \mathrm{H}) \mathrm{ppm}$. IR $\left(\mathrm{cm}^{-1}\right): ~ v 3208,2925,2868,2211,1584,1505,1397,1327,1245,1119,1053,936,666,583$, 449, 409. Due to low solubility, ${ }^{13} \mathrm{C}$ NMR spectrum could not be obtained.

Scheme 10. Route to PAEs 3 and PAEs 4

6

$\xrightarrow[\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4} \mathrm{Cul},]{\text { 1, } \mathrm{R}^{1}=\mathrm{OCH}_{2} \mathrm{COOE}}$ toluene/TEA, $70^{\circ} \mathrm{C}, 1 \mathrm{~d}$

$\mathrm{NaOH}, \mathrm{H}_{2} \mathrm{O}$,
$70^{\circ} \mathrm{C}, 1 \mathrm{~d}$$\longrightarrow$ PAE 3E, $50 \%, \mathrm{R}^{1}=\mathrm{OCH}_{2}$ COOEt, $\mathrm{R}^{2}=\mathrm{Et}$.

$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}, \mathrm{Cul}$, toluene/TEA, $60^{\circ} \mathrm{C}, 1 \mathrm{~d}$

Scheme 11. Synthesis of PAE 3E

Compound 1 was synthesized according to the literature. ${ }^{4}$
Compound $\mathbf{6}$ was synthesized according to the literature. ${ }^{7}$
Synthesis of PAE 3E. Monomer 1 ($270 \mathrm{mg}, 0.80 \mathrm{mmol}$) and monomer $6(263 \mathrm{mg}, 0.80$ $\mathrm{mmol})$ were dissolved in a mixture of degassed toluene $/ \mathrm{NEt}_{3}(2: 1,20 \mathrm{~mL} / 10 \mathrm{~mL}) . \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ $(46 \mathrm{mg}, 40 \mu \mathrm{~mol})$ and $\mathrm{CuI}(8.0 \mathrm{mg}, 40 \mu \mathrm{~mol})$ were added and the mixture was stirred at $70^{\circ} \mathrm{C}$ for 24 h . Saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ were added, the aqueous layer was separated and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were dried over MgSO_{4}, filtered and concentrated in vacuo. Two times, the crude product was dissolved in a small amount of CHCl_{3} and slowly added to an excess of MeOH to give PAE 3E as a red solid ($202 \mathrm{mg}, 50 \%$).

The M_{n} was estimated to be 5.8×10^{3} with a PDI of $1.5 .{ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ 8.24-8.63 (m, 1 H), 7.53-7.73 (m, 1 H), 7.32-7.48 (m, 1 H), 6.98-7.17 (m, 1 H$), 4.70-4.91$ (m, $2 \mathrm{H}), 4.24-4.32(\mathrm{~m}, 2 \mathrm{H}), 3.57-3.67(\mathrm{~m}, 4 \mathrm{H}), 3.07-3.14(\mathrm{~m}, 4 \mathrm{H}), 1.34-1.45(\mathrm{~m}, 9 \mathrm{H}) \mathrm{ppm}$. IR $\left(\mathrm{cm}^{-1}\right): v 3365,3038,2979,2941,2738,2623,2604,2531,2497,2208,1748,1622,1579$, $1505,1464,1439,1396,1282,1072,1026,945,895,852,804,753,721,694,622,594,541$. Due to low solubility, ${ }^{13} \mathrm{C}$ NMR spectrum could not be obtained.

Scheme 12. Synthesis of PAE 3

Synthesis of PAE 3. To a mixture of PAE 3E ($100 \mathrm{mg}, 0.20 \mathrm{mmol}$) and water (20 mL), $\mathrm{NaOH}(160 \mathrm{mg}, 2.0 \mathrm{mmol})$ was added and the resulting mixture was stirred at $70^{\circ} \mathrm{C}$ for 24 h . After adjusting a pH of $7(\mathrm{HCl})$ the aqueous mixture was dialyzed against DI $\mathrm{H}_{2} \mathrm{O}$ for 3 d . Freeze-drying gave PAE 3 as spongy, dark orange solid ($72 \mathrm{mg}, 85 \%$). The M_{n} and PDI result from PAE 3E. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$): $\delta=6.62-8.37(\mathrm{~m}, 4 \mathrm{H}), 3.00-3.96(\mathrm{~m}, 6 \mathrm{H}) \mathrm{ppm}$. IR $\left(\mathrm{cm}^{-1}\right): v 3396,3220,3059,2926,2877,2650,2203,1726,1604,1588,1504,1402,1282$, $1191,1064,963,915,887,465,455,444,431,417$. Due to low solubility, ${ }^{13} \mathrm{C}$ NMR spectrum could not be obtained

Scheme 13. Synthesis of 7

1) 2.5 N NaOH ,

THF/MeOH,

2) HBTU diethyl iminodiacetate, DMSO/TEA, rt, 2 d

Compound $\mathbf{1}$ was synthesized according to the literature. ${ }^{4}$

Synthesis of 7. To a solution of $\mathbf{1}(3.00 \mathrm{~g}, 8.85 \mathrm{mmol})$ in mixture of THF/MeOH (2:1, 60 $\mathrm{mL} / 30 \mathrm{~mL}$) was added $2.5 \mathrm{~N} \mathrm{NaOH}_{\mathrm{aq}}(33 \mathrm{~mL})$ and heated at $60^{\circ} \mathrm{C}$ for 2 h . After cooling down to ambient temperature, the pH value was adjusted to 6.0 . The solution was filtered and the solvent was removed under reduced pressure. The resulting white solid was solved in DMSO (30 mL) and TEA (5 mL), before diethyliminodiacetate ($2.0 \mathrm{~mL}, 10.6 \mathrm{mmol}$) was added. The reaction was stirred for 2 d at room temperature. The solution was diluted with ethyl acetate, washed with $\mathrm{H}_{2} \mathrm{O}$ and $\mathrm{NaCl}_{\mathrm{aq}}$. The organic layer was dried over MgSO_{4}, filtered and the solvent was evaporated in vacuo. The resulting yellow oil was purified by flash chromatography on silica gel [petroleum ether/ethyl acetate (1/1)] to give compound 7 (3.24 $\mathrm{g}, 6.72 \mathrm{mmol}, 76 \%)$ as colorless solid (m. p. $100-102{ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=$ $8.11(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.39(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.88(\mathrm{~s}, 2 \mathrm{H}), 4.28(\mathrm{~s}, 2 \mathrm{H}), 4.19-4.25(\mathrm{~m}$, $4 \mathrm{H}), 4.18$ (s, 2 H), 1.25-1.30 (m, 6 H) ppm. ${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=168.44$, $168.30,167.04,151.74,143.10,130.99,123.53,119.66,67.97,62.18,61.61,49.74,48.48$, 14.10 ppm . IR $\left(\mathrm{cm}^{-1}\right): v 2964,1736,1665,1561,1546,1475,1450,1417,1398,1372,1351$, $1299,1271,1248,1214,1190,1124,1088,1051,1024,960,867,826,743,713,687,602$, 576, 502, 425. HR-MS (EI $): m / z$ calcd. for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{Br}_{2}{ }^{+} 482.5989[\mathrm{M}+\mathrm{H}]^{+}$; found 482.9577. $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{Br}_{2}$ (482.13): calcd. C 37.37 , $\mathrm{H} 3.76, \mathrm{~N} 5.81, \mathrm{Br} 33.15$, found C 37.13 , H 3.74, N 5.65, Br 32.96.

Scheme 14. Synthesis of PAE 4E

Compound $\mathbf{6}$ was synthesized according to the literature. ${ }^{7}$

Synthesis of PAE 4E. Monomer $6(138 \mathrm{mg}, 0.42 \mathrm{mmol})$ and monomer $7(202 \mathrm{mg}, 0.42$ $\mathrm{mmol})$ were dissolved in mixture of degassed toluene $/ \mathrm{NEt}_{3}(1.5: 1,8.4 \mathrm{~mL} / 5.6 \mathrm{~mL}) . \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ $(24 \mathrm{mg}, 21 \mu \mathrm{~mol}) \mathrm{CuI}(4 \mathrm{mg}, 21 \mu \mathrm{~mol})$ were added and the mixture was stirred at $60^{\circ} \mathrm{C}$ for 24 h. Water and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ were added, the aqueous layer was separated and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were dried over MgSO_{4}, filtered and concentrated in vacuo. Two times, the crude product was dissolved in a small amount of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and slowly added to an excess of pentane. PAE 4E was purified by gel permeation chromatography $\left(\mathrm{CHCl}_{3}\right)$ to give an orange powder ($152 \mathrm{mg}, 53 \%$). The M_{n} was estimated to be 6.6×10^{3} with a PDI of 2.6. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.29-8.48(\mathrm{~m}, 1 \mathrm{H}), 7.49-7.60(\mathrm{~m}, 1 \mathrm{H}), 6.99-7.22(\mathrm{~m}, 2$ H), 5.05-5.13 (m, 2 H), 4.69-4.80 (m, 4 H), 4.38-4.52 (m, 2 H), 4.27-4.35 (m, 4 H), 4.06-4.20 (m, 6 H), 1.24-1.36 (m, 9 H$), 1.07-1.13(\mathrm{~m}, 3 \mathrm{H}) \mathrm{ppm}$. IR ($\left.\mathrm{cm}^{-1}\right): ~ v 2161,1742,1681,1504$, $1400,1187,1077,1023,861,457,434,425,414$. Due to low solubility, ${ }^{13} \mathrm{C}$ NMR spectrum could not be obtained.

Scheme 15. Synthesis of PAE 4

Synthesis of PAE 4. PAE 4E ($70 \mathrm{mg}, 0.10 \mathrm{mmol}$) was suspended in $2.5 \mathrm{~N} \mathrm{NaOH}(2 \mathrm{~mL})$ and refluxed at $50^{\circ} \mathrm{C}$ for 24 h . After adjusting a pH of $7(\mathrm{HCl})$ the aqueous mixture was dialyzed against DI $\mathrm{H}_{2} \mathrm{O}$ for 3 d . Freeze-drying gave PAE 4 as fluffy, orange solid ($58 \mathrm{mg}, 90 \%$). The M_{n} and PDI result from PAE 4E. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$): $\delta=8.21-8.40(\mathrm{~m}, 1 \mathrm{H}), 7.62-$ 7.74 (m, 1 H), 6.94-7.23 (m, 2 H), 4.96-5.21 (m, 2 H), 4.53-4.65 (m, 4 H), 3.93-4.12 (m, 4 H)
ppm. IR (cm ${ }^{-1}$): v 2359, 1605, 1506, 1400, 1205, 1033, 868, 619, 486, 444, 418. Due to low solubility, ${ }^{13} \mathrm{C}$ NMR spectrum could not be obtained.

Scheme 16. Route to PAEs 5

Scheme 17. Synthesis of PAE 5E

Synthesis of compound $\mathbf{5}$ see above.
Synthesis of 10 see below.
Synthesis of PAE 5E. Monomer $5(130 \mathrm{mg}, 0.49 \mathrm{mmol})$ and monomer $10(300 \mathrm{mg}, 0.49$ $\mathrm{mmol})$ were dissolved in a mixture of degassed toluene/ $\mathrm{NEt}_{3}(1.5: 1,9 \mathrm{~mL} / 7 \mathrm{~mL}) . \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ $(28 \mathrm{mg}, 24 \mu \mathrm{~mol})$ and $\mathrm{CuI}(4.5 \mathrm{mg}, 24 \mu \mathrm{~mol})$ were added and the mixture was stirred at $80^{\circ} \mathrm{C}$ for 24 h . Saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ and CHCl_{3} were added, the aqueous layer was separated and extracted with CHCl_{3}. The combined organic layers were dried over MgSO_{4}, filtered and concentrated in vacuo. Two times, the crude product was dissolved in a small amount of
CHCl_{3} and slowly added to an excess of pentene to give PAE 5E as yellow/orange solid (318 $\mathrm{mg}, 90 \%$). The M_{n} was estimated to be 1.1×10^{4} with a PDI of 1.9 . ${ }^{1} \mathrm{H}$ NMR (600 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=8.21-8.44(\mathrm{~m}, 1 \mathrm{H}), 7.47-7.71(\mathrm{~m}, 1 \mathrm{H}), 7.09-7.22(\mathrm{~m}, 2 \mathrm{H}), 4.68-5.01(\mathrm{~m}, 4 \mathrm{H})$, 4.05-4.47 (m, 16 H$), 3.91-4.03(\mathrm{~m}, 3 \mathrm{H}), 1.14-1.30(\mathrm{~m}, 12 \mathrm{H}) \mathrm{ppm}$. IR $\left(\mathrm{cm}^{-1}\right): v 3129,2983$, 2947, 2806, 1735, 1663, 1578, 1502, 1446, 1397, 1374, 1297, 1181, 1093, 1020, 969, 867, 747, 678, 667, 573, 514, 504. Due to low solubility, ${ }^{13} \mathrm{C}$ NMR spectrum could not be obtained.

Scheme 18. Synthesis of PAE 5

Synthesis of PAE 5. To a mixture of PAE 5E ($195 \mathrm{mg}, 0.27 \mathrm{mmol}$) and water (40 mL), $\mathrm{NaOH}\left(216 \mathrm{mg}, 5.4 \mathrm{mmol}\right.$) was added and the resulting mixture was stirred at $70^{\circ} \mathrm{C}$ for 3 d . After adjusting a pH of $7(\mathrm{HCl})$ the aqueous mixture was dialyzed against $\mathrm{DI}_{\mathrm{H}_{2} \mathrm{O}}$ for 3 d . Freeze-drying gave PAE 5 as spongy, yellow solid ($187 \mathrm{mg}, 99 \%$). The M_{n} and PDI result from PAE 5E. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.08-8.43(\mathrm{~m}, 4 \mathrm{H}), 4.93-5.07(\mathrm{~m}, 2 \mathrm{H}), 2.96-$ 4.12 (m, 13 H$)$ ppm. IR (cm^{-1}): v 3352, 1591, 1503, 1395, 1316, 1061, 972, 792, 720, 545, 448. Due to low solubility, ${ }^{13} \mathrm{C}$ NMR spectrum could not be obtained.

Scheme 19. Route to PAEs 6 and PAEs 7

Scheme 20. Synthesis of 9

Compound $\mathbf{8}$ was synthesized according to the literature. ${ }^{8}$
Synthesis of 9. Compound $\mathbf{8 (2 . 0 0 \mathrm { g } , 2 . 4 4 \mathrm { mmol }) \text { was dissolved in a degassed mixture of }}$ toluene $/ \mathrm{NEt}_{3}(2: 1,15 \mathrm{~mL} / 7.5 \mathrm{~mL}) . \mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(86 \mathrm{mg}, 122 \mu \mathrm{~mol})$ and $\mathrm{CuI}(23 \mathrm{mg}, 122$ $\mu \mathrm{mol}$) were added, then TMS-acetylene ($867 \mu \mathrm{~L}, 2.60 \mathrm{mmol}$) was and dropwise and the resulting mixture was stirred for 2 d at room temperature. Saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ were added, the aqueous layer was separated and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were dried over MgSO_{4}, filtered and concentrated in vacuo. The crude product was purified by flash chromatography on silica gel [petroleum ether/ethyl acetate (5/2)] to give compound $9(1.10 \mathrm{~g}, 1.45 \mathrm{mmol}, 59 \%)$ as grizzly solid (m. p. 120-122 ${ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=6.98$ (s, 2 H), 4.76 ($\mathrm{s}, 4 \mathrm{H}$), $4.39(\mathrm{~s}, 4 \mathrm{H}), 4.13-4.21(\mathrm{~m}$, 12 H), 1.19-1.27 (m, 12 H), 0.26 ($\mathrm{s}, 18 \mathrm{H}$) ppm. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=168.81$, $168.79,168.49,153.51,118.76,114.82,101.71,99.97,69.41,61.87,49.98,48.75,14.27$, 14.26, -0.01 ppm. IR (cm^{-1}): v 2987, 2960, 2900, 2160, 2153, 1741, 1666, 1502, 1491, 1464, 1446, 1433, 1407, 1374, 1351, 1291, 1248, 1183, 1117, 1088, 1046, 1021, 1013, 973, 876, 858, 840, 762, 731, 704. HR-MS (DART ${ }^{+}$: m / z calcd. for $\mathrm{C}_{36} \mathrm{H}_{56} \mathrm{~N}_{3} \mathrm{O}_{12} \mathrm{Si}_{2}{ }^{+} 778.3397$ $\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$; found 778.3402. $\mathrm{C}_{36} \mathrm{H}_{52} \mathrm{~N}_{2} \mathrm{O}_{12} \mathrm{Si}_{2}$ (760.98): calcd. C 56.82, H 6.89, N 3.68; found C 56.80, H 6.59, N 3.54 .

Scheme 21. Synthesis of 10

Synthesis of 10. Compound $9(1.10 \mathrm{~g}, 1.45 \mathrm{mmol})$ was dissolved in a mixture of $\mathrm{EtOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}(1: 1,15 \mathrm{~mL} / 15 \mathrm{~mL}) . \mathrm{K}_{2} \mathrm{CO}_{3}(2.00 \mathrm{~g}, 14.5 \mathrm{mmol})$ was added and the resulting mixture was stirred for 16 h at ambient temperature. Water and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ were added, the aqueous layer was separated and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were dried over MgSO_{4}, filtered and concentrated in vacuo. The crude product was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and filtered again and concentrated in vacuo to give compound $\mathbf{1 0}(812 \mathrm{mg}, 1.32$ mmol, 91%) as yellowish solid (m. p. $190{ }^{\circ} \mathrm{C}$ decomposition). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $=7.03(\mathrm{~s}, 2 \mathrm{H}), 4.78(\mathrm{~s}, 4 \mathrm{H}), 4.34(\mathrm{~s}, 4 \mathrm{H}), 4.13-4.23(\mathrm{~m}, 12 \mathrm{H}), 3.34(\mathrm{~s}, 2 \mathrm{H}), 1.21-1.30(\mathrm{~m}$, $12 \mathrm{H})$ ppm. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=168.85,168.69,168.31$, 153.77, 118.78, 114.01, 83.81, 78.92, 69.18, 61.95, 61.55, 49.93, 48.64, 14.28, 14.25 ppm . IR (cm^{-1}): v 3242, $2982,2942,1743,1658,1506,1472,1431,1403,1373,1354,1311,1292,1274,1249,1193$, 1118, 1094, 1046, 1022, 1010, 971, 927, 889, 872, 821, 796, 762, 731, 633. HR-MS $\left(\mathrm{DART}^{+}\right): m / z$ calcd. for $\mathrm{C}_{30} \mathrm{H}_{40} \mathrm{~N}_{3} \mathrm{O}_{12}{ }^{+} 634.2607\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$; found 634.2583. $\mathrm{C}_{30} \mathrm{H}_{36} \mathrm{~N}_{2} \mathrm{O}_{12}$ (616.62): calcd. C 58.44, H 5.88, N 4.54, found C 57.94, H 5.84, N 4.50.

Scheme 22. Synthesis of PAE 6E

Compound 1 was synthesized according to the literature. ${ }^{4}$
Synthesis of PAE 6E. Monomer $1(200 \mathrm{mg}, 0.59 \mathrm{mmol})$ and monomer $10(304 \mathrm{mg}, 0.59$ $\mathrm{mmol})$ were dissolved in a mixture of degassed toluene $/ \mathrm{NEt}_{3}(1.5: 1,12 \mathrm{~mL} / 8 \mathrm{~mL}) . \operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ ($34 \mathrm{mg}, 30 \mu \mathrm{~mol}$) and $\mathrm{CuI}(5.7 \mathrm{mg}, 30 \mu \mathrm{~mol})$ were added and the mixture was stirred at $70^{\circ} \mathrm{C}$ for 4 d. Saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ were added, the aqueous layer was separated and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were dried over MgSO_{4}, filtered and concentrated in vacuo. The residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, filtered again and concentrated in vacuo. Two times, the crude product was dissolved in a small amount of CHCl_{3} and slowly added to an excess of pentene to give PAE 6E as yellow solid ($353 \mathrm{mg}, 75 \%$). The M_{n} was estimated to be 8.4×10^{3} with a PDI of $1.2 .{ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.26-8.52(\mathrm{~m}, 1$ H), 7.30-7.49 (m, 1 H), 7.00-7.23 (m, 2 H), 4.80-4.94 (m, 4 H), 4.07-4.51 (m, 20 H$), 1.15-$ 1.32 (m, 15 H$)$ ppm. IR (cm^{-1}): v 2983, 2939, 2909, 2871, 1737, 1668, 1561, 1498, 1464, $1404,1373,1351,1264,1183,1094,1021,970,932,909,858,830,810,788,750,721,650$, 588. Due to low solubility, ${ }^{13} \mathrm{C}$ NMR spectrum could not be obtained.

Scheme 23. Synthesis of PAE 6

Synthesis of PAE 6. To a mixture of PAE 6E ($100 \mathrm{mg}, 0.13 \mathrm{mmol}$) and water (20 mL), $\mathrm{NaOH}\left(104 \mathrm{mg}, 2.6 \mathrm{mmol}\right.$) was added and the resulting mixture was stirred at $70^{\circ} \mathrm{C}$ for 1 d . After adjusting a pH of $7(\mathrm{HCl})$ the aqueous mixture was dialyzed against DI $\mathrm{H}_{2} \mathrm{O}$ for 3 d . Freeze-drying gave PAE 6 as spongy, orange solid ($59 \mathrm{mg}, 60 \%$). The M_{n} and PDI result from PAE 6E. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$): $\delta=6.85-8.37(\mathrm{~m}, 4 \mathrm{H})$, 4.86-5.03 (m, 2 H), 3.894.36 (m, 12 H) ppm. IR (cm ${ }^{-1}$): v 3399, 3065, 2947, 2643, 1722, 1651, 1607, 1498, 1401, 1320, 1187, 1087, 1044, 971, 884, 792, 579, 458, 411. Due to low solubility, ${ }^{13} \mathrm{C}$ NMR spectrum could not be obtained

Scheme 24. Synthesis of PAE 7E

Synthesis of PAE 7E. Monomer $7(250 \mathrm{mg}, 0.52 \mathrm{mmol})$ and monomer $10(320 \mathrm{mg}, 0.52$ $\mathrm{mmol})$ were dissolved in a mixture of degassed toluene $/ \mathrm{NEt}_{3}(1.5: 1,9 \mathrm{~mL} / 7 \mathrm{~mL}) . \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$
($30 \mathrm{mg}, 26 \mu \mathrm{~mol}$) and $\mathrm{CuI}(5.0 \mathrm{mg}, 26 \mu \mathrm{~mol})$ were added and the mixture was stirred at $70^{\circ} \mathrm{C}$ for 2 d . Saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ were added, the aqueous layer was separated and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were dried over MgSO_{4}, filtered and concentrated in vacuo. The residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, filtered again and concentrated in vacuo. Two times, the crude product was dissolved in a small amount of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and slowly added to an excess of pentene to give PAE 7E as yellow solid ($256 \mathrm{mg}, 51 \%$). The M_{n} was estimated to be 1.1×10^{4} with a PDI of $1.5 .{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.28-8.47$ $(\mathrm{m}, 1 \mathrm{H}), 7.46-7.60(\mathrm{~m}, 1 \mathrm{H}), 7.02-7.24(\mathrm{~m}, 2 \mathrm{H}), 4.75-5.12(\mathrm{~m}, 6 \mathrm{H}), 4.06-4.45(\mathrm{~m}, 24 \mathrm{H})$, 1.10-1.32 (m, 18 H) ppm. IR (cm^{-1}): v 2983, 2939, 2905, 2875, 1738, 1661, 1575, 1560, 1503, $1464,1402,1373,1352,1260,1094,1021,970,863,752,698,651,623,589,520$. Due to low solubility, ${ }^{13} \mathrm{C}$ NMR spectrum could not be obtained.

Scheme 25. Synthesis of PAE 7

Synthesis of PAE 7. To a mixture of PAE 7E ($100 \mathrm{mg}, 0.11 \mathrm{mmol}$) and water (20 mL), $\mathrm{NaOH}(88 \mathrm{mg}, 2.2 \mathrm{mmol})$ was added and the resulting mixture was stirred at $70^{\circ} \mathrm{C}$ for 2 d . After adjusting a pH of $7(\mathrm{HCl})$ the aqueous mixture was dialyzed against DI $\mathrm{H}_{2} \mathrm{O}$ for 3 d . Freeze-drying gave PAE 7 as spongy, orange solid ($77 \mathrm{mg}, 91 \%$). The M_{n} and PDI result from PAE 7E. ${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right): \delta=8.22-8.30(\mathrm{~m}, 1 \mathrm{H}), 7.63-7.75(\mathrm{~m}, 1 \mathrm{H}), 7.04-$ 7.33 (m, 2 H), 4.95-5.10 (m, 4 H), 3.96-4.14 (m, 14 H) ppm. IR (cm^{-1}): v 3384, 3263, 3068, 2996, 2950, 2643, 1715, 1642, 1598, 1502, 1478, 1396, 1319, 1294, 1193, 1140, 1091, 1038,
$974,915,877,844,658,548,519,457,428,413$ Due to low solubility, ${ }^{13} \mathrm{C}$ NMR spectrum could not be obtained.
3. ${ }^{1}$ H NMR Spectra

2

4.720 Chemical Shit (ppm
4.720 Chemical Shift (ppm)
4.325 Chemical Shift (ppm)
1.35

Chemical Shift (ppm)
0.300 Chemical Shift (ppm)

Current Data Parameters	
NAME	e150506ubmb. 119
EXPNO	2
PROCNO	1

F2 - Acquisition Parameters

F2 - Acquisition Parameters	
Date	20150506
Time	14.26
INSTRUM	spect
PROBHD	Z132808_0001 (
PULPROG	zg30
TD	131072
SOLVENT	CDCl $_{3}$
NS	128
DS	2
SWH	18028.846 Hz
FIDRES	0.137549 Hz
AQ	3.6350634 sec
RG	13.85
DW	27.733 usec
DE	12.00 usec
TE	295.0 K
D1	0.10000000 sec
TD0	16

====== CHANNEL f 1 =====
NUC1
P1 7.63 usec
PLW1 7.50000000 W

SFO1 $\quad 600.2468302 \mathrm{MHz}$
F2 - Processing parameters

SI	65536

$\begin{array}{lr}\text { SF } & 600.2438290 \mathrm{MHz} \\ \text { WDW } & \text { EM }\end{array}$
SSB
LB

Current Data Parameters	
NAME	e140623ubmb. 38
EXPNO	2
PROCNO	1

F2 - Acquisition Parameters

F2-Acquisition Parameters	
Date	20140624
Time	6.44

INSTRUM spect
PROBHD $5 \mathrm{~mm} \mathrm{CPQCI-1H-}$

PULPROG \quad zg30	
	131072

SOLVENT	CDCl_{3}
NS	128

DS
SWH $\quad 18028.846 \mathrm{~Hz}$
FIDRES $\quad 0.137549 \mathrm{~Hz}$

AQ	3.6350634 sec
RG	13.85

DE
298.1 K

TD0
0.10000000 sec
====== CHANNEL f1 =====
NUC1
P1 7.63 usec
PLW1 $\quad 7.50000000 \mathrm{~W}$
SFO1 $\quad 600.2468302 \mathrm{MHz}$
F2 - Processing parameters
SF 600.2438788 MHz
SF
600.2438788 MHz
EM

SSB
LB
GB
PC
0.30 Hz

4. UV/VIS Spectra

Normalized UV/VIS spectra of the unsaponified polymer precursors is shown in the graphic below.

5. Metall Sensing Data

The picture below shows PAEs 1-7 in $\mathrm{H}_{2} \mathrm{O}(\mathrm{c}=5 \mu \mathrm{~g} / \mathrm{mL}$) with different metal cations (added as perchlorates and CuI) under a hand-held black light with illumination at 365 nm . Since solely Pb^{2+} and Hg^{2+} show quenching effects for all synthesized PAEs, we choosed these cases for a detailed Stern-Volmer analysis.

6. pH -Titrations

All titrations were performed in buffer solutions as stated above. Under a) the corresponding photographs of the resulting solutions $(c(\mathrm{PAE})=2.5 \mu \mathrm{~g} / \mathrm{mL})$ illuminated under a hand-held blacklight at 365 nm are shown. The corresponding normalized absorption and emission spectra are shown under b). The molecular structure belonging to the measurements is shown on the right.

7. Evaluation of Stern-Volmer Constants

All metal titrations were performed at pH 7 in PIPES buffer ($\mathrm{c}=0.050 \mathrm{M}$) and KClO_{4} $(c=0.1 \mathrm{M})$. The gathered emission data is shown in the inset of the following graphs. The fitting was done using a modified Stern-Volmer equation, by either using the decreasing peak height or the decreasing peak area under the emission curve.
$I_{q}=I_{0}+\frac{I_{\text {final }}-I_{0}}{2} \times\left\{1+\frac{[Q]}{[F]}+\frac{1}{K_{S V}[F]}-\left[\left(1+\frac{[Q]}{[F]}+\frac{1}{K_{S V}[F]}\right)^{2}-4 \frac{[Q]}{[F]}\right]^{1 / 2}\right\}$
$I_{0}=$ initial fluorescence intensity of the fluorophore
$I_{\text {final }}=$ final fluorescence intensity of the fluorophore
$I_{q}=$ fluorescence intensity by a given quencher concentration
$[F]=$ concentration of the fluorophore
$[Q]=$ concentration of the quencher
$K_{\mathrm{sv}}=$ Stern-Volmer constant.

Quencher: $\mathrm{Hg}(\mathrm{OAc})_{2}$
$K_{\text {SV }}=1283.89 \pm 221.14$
$\log K_{\mathrm{SV}}=3.11 \pm 0.07$

$c($ Polymer $)=2.85 \times 10^{-5} \mathrm{molL}^{-1}$

Quencher: $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$
$K_{\mathrm{SV}}=158989.88 \pm 50851.44$
$\log K_{\text {SV }}=4.23 \pm 0.11$

$c($ Polymer $)=1.85 \times 10^{-6} \mathrm{molL}^{-1}$

Quencher: $\mathrm{Hg}(\mathrm{OAc})_{2}$
$K_{\text {SV }}=112161.96 \pm 5357.46$
$\log K_{\text {SV }}=4.48 \pm 0.20$

$c($ Polymer $)=1.85 \times 10^{-6} \mathrm{molL}^{-1}$

Quencher: $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$
$K_{\text {SV }}=241691.06 \pm 218086.79$
$\log K_{\mathrm{SV}}=5.38 \pm 0.39$

Quencher: $\mathrm{Hg}(\mathrm{OAc})_{2}$
$K_{\text {sV }}=4364.94 \pm 1140.32$
$\log K_{\mathrm{sv}}=3.64 \pm 0.11$

Quencher: $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$
$K_{\mathrm{sV}}=17103.86 \pm 4165.57$
$\log K_{\text {SV }}=5.20 \pm 0.14$

Concentration $\mathrm{Hg}^{2+}[\mathrm{M}]$

Quencher: $\mathrm{Hg}(\mathrm{OAc})_{2}$
$K_{\text {sv }}=30507.07 \pm 13731.05$
$\log K_{\text {SV }}=5.02 \pm 0.02$

Quencher: $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$
$K_{\text {SV }}=158645.66 \pm 17020.17$
$\log K_{\text {SV }}=5.20 \pm 0.05$

$c($ Polymer $)=1.84 \times 10^{-5} \mathrm{molL}^{-1}$

$K_{\mathrm{sv}}=32782.94 \pm 3414.56$ $\log K_{\text {SV }}=4.52 \pm 0.05$

$c($ Polymer $)=1.84 \times 10^{-5} \mathrm{molL}^{-1}$

Quencher: $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$ $K_{\text {SV }}=13065.18 \pm 2730.01$
$\log K_{\text {SV }}=4.12 \pm 0.09$

$c($ Polymer $)=7.65 \times 10^{-6} \mathrm{molL}^{-1}$

Quencher: $\mathrm{Hg}(\mathrm{OAc})_{2}$
$K_{\mathrm{sV}}=41.90 \pm 9.08$
$\log K_{\mathrm{sV}}=1.62 \pm 0.09$

$c($ Polymer $)=7.65 \times 10^{-6} \mathrm{molL}^{-1}$

Quencher: $\mathrm{Hg}(\mathrm{OAc})_{2}$

The emission data gathered during pH -titration was also fitted using the modified SternVolmer equation stated above. The obtained Stern-Volmer constants represent a roughly direction of the quenching behavior towards H^{+}. Since there is a remarkably bathochromic shift in emission wavelength only the decreasing peak area under the emission curve was used for fitting. The analyzed emission data is shown in the inset of the following graphs.

Quencher: H^{+} $K_{\text {SV }}=5258.23 \pm 687.95$
$\log K_{\text {SV }}=3.72 \pm 0.06$

Quencher: H^{+}
$K_{\text {SV }}=6450.56 \pm 2080.16$
$\log K_{\mathrm{sv}}=3.81 \pm 0.14$

8. Supplemental References

(1) G. Helmchen, G. Nill, D. Flockerzi, W. Schühle and M.S.K. Youssef, Angew. Chem. 1979, 91, 64-65; Angew. Chem. Int. Ed. Engl., 1979, 18, 62-63
(2) G. R. Fulmer, A. J. Miller, N. H. Sherden, H. E. Gottlieb, A. Nudelman, B. M. Stoltz, J. E. Bercaw and K. I. Goldberg, Organometallics, 2010, 29, 2176-2179
(3) W. Melhuish, J. Phys. Chem., 1961, 65, 229-235.
(4) K. Seehafer, M. Bender and U. H. Bunz, Macromolecules, 2014, 47, 922-927.
(5) D. J. Haydon, J. M. Bennett, D. Brown, I. Collins, G. Galbraith, P. Lancett, R. Macdonald, N. R. Stokes, P. K. Chauhan and J. K. Sutariya, J. Med. Chem., 2010, 53, 3927-3936.
(6) A. H. Berrie, G. T. Gewbold and F. S. Spring, J. Chem. Soc., 1952, 2042-2046.
(7) I.-B. Kim, A. Dunkhorst, J. Gilbert and U. H. Bunz, Macromolecules, 2005, 38, 4560-4562.
(8) I.-B. Kim, R. Phillips and U. H. Bunz, Macromolecules, 2007, 40, 5290-5293.

