Electronic Supplementary Information (ESI)

A smart rhodamine-pyridine conjugate for bioimaging of thiocyanate in living cells cells

Sandip Mandal,^{*a*} Animesh Sahana,^{*a*} Arnab Banerjee,^{*a*} Damir A. Safin,*^{*b*} Maria G. Babashkina,^{*b*} Koen Robeyns,^{*b*} Sjoerd Verkaart,^{*c*} Joost G. J. Hoenderop,^{*c*} Mariusz P. Mitoraj,*^{*d*} Yann Garcia,*^{*b*} and Debasis Das*^{*a*}

^aDepartment of Chemistry, The University of Burdwan, 713104, Burdwan, West Bengal, India. Fax: (+91) 342 2530452; E-mail: ddas100in@yahoo.com

^bInstitute of Condensed Matter and Nanosciences, Molecules, Solids and Reactivity (IMCN/MOST), Université Catholique de Louvain, Place L. Pasteur 1, 1348 Louvain-la-Neuve, Belgium. Fax: +32(0) 1047 2330; Tel: +32(0) 1047 2831; E-mail: damir.a.safin@gmail.com, yann.garcia@uclouvain.be

^cDepartment of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands

^dDepartment of Theoretical Chemistry, Faculty of Chemistry, Jagiellonian University, R. Ingardena 3, 30-060 Cracow, Poland. E-mail: mitoraj@chemia.uj.edu.pl

Fig. S1 ¹H NMR spectra of REDA-2PC (black), REDA-2PC + 0.5 equivalent of NCS⁻ (red), REDA-2PC + 1 equivalent of NCS⁻ (blue), REDA-2PC + 2.5 equivalents of NCS⁻ (purple) and REDA-2PC + 5 equivalents of NCS⁻ (wine) in CD₃CN:D₂O (9:1, v/v). For peak picking in the spectrum of REDA-2PC see Scheme S1. Some new bands are marked with an asterisk.

Fig. S2 FTIR spectra of REDA-2PC (black) and [REDA-2PC + NCS⁻] (red)

Fig. S3 The QTOF mass spectrum of REDA-2PC.

Fig. S4 Effect of pH on the emission intensity of REDA-2PC (black) and the [REDA-2PC + NCS⁻] system (red).

Fig. S5 Fluorescence spectra of REDA-2PC (50 μ M) in HEPES buffered (0.1 M; CH₃CN:H₂O, 9:1 v/v; pH 7.4; $\lambda_{exc} = 520$ nm) solution in the presence of different anions: N₃⁻, NO₂⁻, NO₃⁻, NCO⁻, AcO⁻, F⁻, Cl⁻, Br⁻, I⁻, SO₄²⁻, C₂O₄²⁻, Cr₂O₇²⁻, PO₄³⁻, AsO₄³⁻, ClO₄⁻ and NCS⁻ (500 μ M).

Fig. S6 UV light exposed colour of REDA-2PC (50 μ M) in HEPES buffered (0.1 M; CH₃CN:H₂O, 9:1 v/v; pH 7.4) solution in the presence of 500 μ M of different anions (from left to right: N₃⁻, NO₂⁻, NO₃⁻, NCO⁻, AcO⁻, F⁻, Cl⁻, Br⁻, I⁻, NCS⁻, SO₄²⁻, C₂O₄²⁻, Cr₂O₇²⁻, PO₄³⁻, AsO₄³⁻, ClO₄⁻).

Fig. S7 UV light exposed colour of **REDA-2PC** (50 μ M) in HEPES buffered (0.1 M; CH₃CN:H₂O, 9:1 v/v; pH 7.4) solution upon gradual addition of NCS⁻ (from left to right: 0, 0.001, 0.01, 0.1, 1.0, 3.0, 5.0, 7.0, 10.0, 25.0, 50.0, 75.0, 100.0, 250.0 and 500.0 μ M).

Fig. S8 Fluorescence intensity of **REDA-2PC** (50 μ M) *vs.* externally added NCS⁻ (0.001–500 μ M). Inset shows the linearity of the fluorescence intensity, observed up to 10 μ M of added NCS⁻.

Fig. S9 Absorption spectra of REDA-2PC (50 μ M) in HEPES buffered (0.1 M; CH₃CN:H₂O, 9:1 v/v; pH 7.4) solution in presence of different anions: N₃⁻, NO₂⁻, NO₃⁻, NCO⁻, AcO⁻, F⁻, Cl⁻, Br⁻, I⁻, SO₄²⁻, C₂O₄²⁻, Cr₂O₇²⁻, PO₄³⁻, AsO₄³⁻, ClO₄⁻ and NCS⁻ (500 μ M).

Fig. S10 Naked eye view of REDA-2PC (50 μ M) in HEPES buffered (0.1 M; CH₃CN:H₂O, 9:1 v/v; pH 7.4) solution in presence of 500 μ M of different anions (from left to right: only REDA-2PC, N₃⁻, NO₂⁻, NO₃⁻, NCO⁻, AcO⁻, F⁻, Cl⁻, NCS⁻, Br⁻, I⁻, SO₄²⁻, C₂O₄²⁻, Cr₂O₇²⁻, PO₄³⁻, AsO₄³⁻, ClO₄⁻).

Fig. S11 Naked eye view of **REDA-2PC** (50 μM) HEPES buffered (0.1 M; CH₃CN:H₂O, 9:1 v/v; pH 7.4) solution upon gradual addition of NCS⁻ (from left to right: 0, 0.001, 0.01, 0.1, 1.0, 3.0, 5.0, 7.0, 10.0, 25.0, 50.0, 75.0, 100.0, 250.0 and 500.0 μM).

Fig. S12 Variation of absorbance of **REDA-2PC** (50 μ M) at λ = 554 nm in HEPES buffered (0.1 M; CH₃CN:H₂O, 9:1 v/v; pH 7.4) solution as a function of externally added NCS⁻ (0.001–500 μ M). Inset shows the linearity of the absorbance intensity, observed up to 10 μ M of added NCS⁻.

Fig. S13 Emission intensity of the [**REDA-2PC** (50 μM) + SCN⁻ (500 μM)] system in HEPES buffered (0.1 M; CH₃CN:H₂O, 9:1 v/v; pH 7.4; λ_{exc} = 520 nm) solution in presence of different ions (500 μM): N₃⁻ (1), NO₂⁻ (2), NO₃⁻ (3), NCO⁻ (4), AcO⁻ (5), F⁻ (6), Cl⁻ (7), Br⁻ (8), I⁻ (9), SO₄²⁻ (10), C₂O₄²⁻ (11), Cr₂O₇²⁻ (12), PO₄³⁻ (13), AsO₄³⁻ (14), ClO₄⁻ (15), Na⁺ (16), K⁺ (17), Mg²⁺ (18), Ca²⁺ (19), Fe³⁺ (20) and a mixture of all ions (21).

Fig. S14 Naked eye (bottom) and UV light exposed (top) views of the [**REDA-2PC** (50 μ M) + SCN⁻ (500 μ M)] system in HEPES buffered (0.1 M; CH₃CN:H₂O, 9:1 v/v; pH 7.4) solution in the presence of different ions (from left to right: N₃⁻, NO₂⁻, NO₃⁻, NCO⁻, AcO⁻, F⁻, Cl⁻, Br⁻, I⁻, SO₄²⁻, C₂O₄²⁻, Cr₂O₇²⁻, PO₄³⁻, AsO₄³⁻, ClO₄⁻, Na⁺, K⁺, Mg²⁺, Ca²⁺ and Fe³⁺).

Fig. S15 Determination of the binding constant of **REDA** with NCS⁻ HEPES buffered (0.1 M; CH₃CN:H₂O, 9:1 v/v; pH 7.4; $\lambda_{exc} = 520$ nm) solution using $(F_{lim} - F_0)/(F_x - F_0) = 1 + (1/K) \times (1/[M]^n)$, where F_{lim} , F_0 and F_x are fluorescence intensities of **REDA** in the presence of NCS⁻ at saturation, free **REDA** and at any intermediate NCS⁻ concentration, respectively.

Fig. S16 Job's plot for the determination of stoichiometry of the [**REDA-2PC** (50 μ M) + NCS⁻] system in HEPES buffered (0.1 M; CH₃CN:H₂O, 9:1 v/v; pH 7.4) solution.

Fig. S17 ¹H NMR spectrum of FEDA-2PC in CD₃CN:D₂O (9:1, v/v)

Fig. S19 Fluorescence spectra of **FEDA-2PC** (50 μ M) in HEPES buffered (0.1 M; CH₃CN:H₂O, 9:1 v/v; pH 7.4; $\lambda_{exc} = 405$ nm) solution in absence (black) and presence (red) of NCS⁻ (500 μ M).

Fig. S20 The ESI mass spectrum of the species obtained after interaction of **REDA-2PC** with NCS⁻ in CH₃CN:H₂O (9:1, v/v).

Fig. S21 Effect of the NCS⁻ incubation on the **REDA-2PC** (10 μ M) fluorescence of human embryonic kidney 293 (HEK293) cells. Error bars represent mean + SEM of at least 90 cells per condition measured at three different days.

Fig. S22 Effect of **REDA-2PC** (10 μ M) and **REDA-2PC** (10 μ M) + NCS⁻ (100 μ M) treatment on viability of HEK293 cells. Error bars represent mean + SEM of two experimental days of at least 206 cells per condition.

Fig. S23 Calculation of the intra-cellular NCS⁻ concentration.

Fig. S24 Effect of NCS⁻ on the fluorescent intensities of REDA-2PC and RTA. Cells were treated as described in Fig. S22 with or without NCS⁻ (3 μ M). Error bars represent mean + SEM of more than 40 individual cells measured at three different days.

Fig. S25 Effect of the solvent composition on the emission intensities of **REDA-2PC** in the absence and presence of NCS⁻.

Fig. S26 Molecular electrostatic potential for the [**REDA-2PCH**]+...**NCS**- complex, projected onto the electron density surface (0.002 a. u.).

Fig. S27 The ETS energy decomposition (ADF/BLYP-D3/TZP) (top), and the most important NOCV-based deformation density channels, describing N–H···NCS⁻ (left bottom) and π – π stacking (right bottom) of (1)[REDA-2PCH]+···NCS⁻.

Bond lengths					
N(25)–C(1)	1.487(3)	C(1)–C(17)	1.521(3)	C(12)–C(13)	1.369(3)
N(25)-C(23)	1.342(3)	C(2)–C(3)	1.391(3)	C(13)–C(14)	1.395(3)
N(25)-C(26)	1.454(3)	C(2)–C(7)	1.382(3)	C(17)–C(18)	1.383(3)
N(28)–C(27)	1.471(3)	C(3)–C(4)	1.375(4)	C(17)–C(22)	1.383(3)
O(8)–C(7)	1.380(3)	C(4)–C(5)	1.391(4)	C(18)–C(19)	1.383(3)
O(8)–C(9)	1.378(3)	C(5)–C(6)	1.381(3)	C(19)–C(20)	1.395(3)
O(15)–C(5)	1.360(3)	C(6)–C(7)	1.385(3)	C(20)–C(21)	1.380(3)
O(16)–C(11)	1.357(3)	C(9)–C(10)	1.391(3)	C(21)–C(22)	1.391(3)
O(24)–C(23)	1.246(3)	C(9)–C(14)	1.375(3)	C(22)–C(23)	1.476(3)
C(1)–C(2)	1.517(3)	C(10)–C(11)	1.385(3)	C(26)–C(27)	1.514(3)
C(1)–C(14)	1.512(3)	C(11)–C(12)	1.395(3)		
Bond angles					
N(25)-C(1)-C(2)	109.80(16)	O(16)-C(11)-C(12)	117.45(19)	C(9)–C(10)–C(11)	119.25(19)
N(25)-C(1)-C(14)	111.23(16)	O(24)-C(23)-N(25)	124.0(2)	C(9)-C(14)-C(13)	117.71(19)
N(25)-C(1)-C(17)	100.10(15)	O(24)-C(23)-C(22)	128.85(19)	C(10)-C(9)-C(14)	121.8(2)
N(25)-C(23)-C(22)	107.17(17)	C(1)–C(2)–C(3)	120.51(18)	C(10)-C(11)-C(12)	119.88(19)
N(25)-C(26)-C(27)	112.85(17)	C(1)–C(2)–C(7)	122.38(19)	C(11)-C(12)-C(13)	119.4(2)
N(28)-C(27)-C(26)	107.83(18)	C(1)-C(14)-C(9)	121.91(18)	C(12)-C(13)-C(14)	121.98(19)
C(1)-N(25)-C(23)	114.04(17)	C(1)-C(14)-C(13)	120.37(18)	C(14)-C(1)-C(17)	111.72(17)
C(1)-N(25)-C(26)	122.16(16)	C(1)-C(17)-C(18)	128.58(18)	C(17)-C(18)-C(19)	118.06(19)
C(23)-N(25)-C(26)	123.70(17)	C(1)-C(17)-C(22)	110.35(18)	C(17)–C(22)–C(21)	121.3(2)
C(7)–O(8)–C(9)	118.36(16)	C(2)–C(1)–C(14)	110.62(16)	C(17)-C(22)-C(23)	108.27(18)
O(8)–C(7)–C(2)	122.8(2)	C(2)–C(1)–C(17)	112.95(17)	C(18)-C(17)-C(22)	121.06(19)
O(8)–C(9)–C(10)	114.44(18)	C(2)–C(3)–C(4)	122.1(2)	C(18)-C(19)-C(20)	120.8(2)
O(8)–C(9)–C(14)	123.80(18)	C(3)–C(2)–C(7)	117.1(2)	C(19)-C(20)-C(21)	121.3(2)
O(15)–C(5)–C(4)	122.0(2)	C(3)–C(4)–C(5)	119.8(2)	C(20)-C(21)-C(22)	117.53(19)
O(15)–C(5)–C(6)	118.90(19)	C(4)–C(5)–C(6)	119.1(2)	C(21)-C(22)-C(23)	130.41(19)
O(16)-C(11)-C(10)	122.66(18)	C(5)-C(6)-C(7)	120.1(2)		

Table S1 Selected bond lengths (Å) and bond angles (°) for FEDA

Table S2 Hydrogen bond lengths (Å) and angles (°) for FEDA^a

D–H…A	<i>d</i> (D–H)	<i>d</i> (H···A)	<i>d</i> (D····A)	∠(DHA)
O(15)-H(15)····N(15) ^{#1}	0.84	1.88	2.721(3)	177
O(16)-H(16)····O(24) ^{#2}	0.84	1.81	2.630(2)	166
N(28)-H(28A)····O(15) ^{#3}	0.98(3)	2.30(3)	3.225(3)	158(2)
N(28)-H(28B)…O(24)#4	0.93(3)	2.50(3)	3.326(3)	149(2)

^{*a*} Symmetry transformations used to generate equivalent atoms: #1 - 1/2 + x, 3/2 - y, 1 - z; #2x, -1 + y, z; #32 - x, 1 - y, 1 - z; #45/2 - x, -1/2 + y, z.

Volume of the diluted	Fluorescence	[NCS ⁻] found in	Fluorescence intensity (a. u.) of	[NCS-] found in serum
blood serum (mL)	intensity (a. u.)	free serum (μM)	serum after spiking 2 µM NCS-	after spiking 2 µM NCS-
1.0	97.1	2.05 ± 0.01	148.6	4.07 ± 0.01
1.5	123.2	2.04 ± 0.01	175.3	4.06 ± 0.01
2.0	147.3	2.00 ± 0.01	198.6	4.04 ± 0.01

Table S3 Determination of the NCS⁻ concentration in diluted (40 times) sheep blood serum

The NCS⁻ concentration found in sheep blood serum is $81.20 \pm 0.01 \mu$ M.

Table S4 Determination of the NCS⁻ concentration in diluted (400 times) cow milk

Volume of the diluted	Fluorescence	[NCS ⁻] found in	Fluorescence intensity (a. u.) of	[NCS ⁻] found in serum
blood serum (mL)	intensity (a. u.)	free serum (μM)	serum after spiking 2 μM NCS ⁻	after spiking 2 µM NCS-
1.0	128.6	3.27 ± 0.01	179.9	5.31 ± 0.01
1.5	170.6	3.27 ± 0.01	223.2	5.32 ± 0.01
2.0	212.7	3.28 ± 0.02	265.3	5.30 ± 0.02

The NCS⁻ concentration found in cow milk is 1.31 ± 0.02 mM.