Silica gel-promoted practical synthesis of oxindole-nitrones from diazooxindoles and nitrosoarenes under solvent-free conditions

Yun-Hao Zhang,^a Ming-Yue Wu^b and Wen-Cai Huang*^a

 ^a Department of Pharmaceutical and Bioengineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, P. R. China.
^b Department of Chemistry, South University of Science and Technology of China, Shenzhen 518055, P. R. China.

E-mail: hwc@scu.edu.cn

Supplementary Information

Table of Contents

1.	General information	.S2
2.	General procedure for the synthesis of oxindole-nitrone on silica gel	.S3
3.	X-ray structure and details	S 10
4.	References	513
5.	NMR spectra.	514

1. General information

All reagents were purchased at the commercial quality and used without further purification. Specially, silica gel (300-400 mesh) used in the reactions was purchased from Yantai Chemical Industry Research Institute. NMR spectra were recorded on a Bruker DPX400 spectrometer (400 MHz) in CDCl₃ with tetramethylsilane (TMS) as internal standard. The chemical shifts are expressed in ppm and coupling constants are given in Hz. Mass spectrometric data were obtained using Bruker Apex IV RTMS.

2. General procedure for the synthesis of oxindole-nitrone on silica gel

In a round bottom flask diazooxindole **1** (0.1 mmol, 1.0 eq) and nitrosobenzene **2** (0.15 mmol, 1.5 eq) were mixed together, and then silica gel (300–400 mesh, 100 mg) was added at room temperature. The mixture was vigorously stirred at 60 °C or at room temperature. After completion of reaction (monitored by TLC), the mixture was subjected to flash column chromatography and eluted with petroleum/ethyl acetate (1/4) to give the product **3**.

(E)-N-(1-Methyl-2-oxoindolin-3-ylidene) aniline oxide (3a)¹

Red-brown solid, 99% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.47 (dd, J = 7.6, 0.4 Hz, 1H), 7.55-7.41 (m, 6H), 7.15 (td, J = 8.0, 0.8 Hz, 1H), 6.85 (d, J = 7.6 Hz, 1H), 3.19 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 159.6, 146.4, 142.1, 134.7, 132.3, 130.7, 129.1, 125.2, 123.7, 123.2, 118.1, 108.0, 26.1.

(E)-N-(1, 5-Dimethyl-2-oxoindolin-3-ylidene) aniline oxide (3b)¹

Red-brown solid, 98% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.32 (s, 1H), 7.50-7.45 (m, 5H), 7.23 (d, *J* = 7.6 Hz, 1H), 6.73 (d, *J* = 7.6 Hz, 1H), 3.16 (s, 3H), 2.39 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 159.6, 146.4, 140.0, 134.9, 132.8, 132.7, 130.6, 129.1, 125.8, 123.7, 118.0, 107.8, 26.1, 21.1.

(E)-N-(5-Methoxy-1-methyl-2-oxoindolin-3-ylidene) aniline oxide (3c)

Purple solid, 91% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.13 (d, J = 2.4 Hz, 1H), 7.54-7.46 (m, 5H), 6.99 (dd, J = 8.4, 2.4 Hz, 1H), 6.75 (d, J = 8.4 Hz, 1H), 3.86 (s, 3H), 3.16 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 159.5, 156.1, 146.4, 136.1, 135.2, 130.7, 129.1, 123.7, 118.6, 118.6, 110.4, 108.7, 56.0, 26.1. HRMS (ESI) calcd for: C₁₆H₁₅N₂O₃ [M+H]⁺ 283.1077, found: 283.1080.

(E)-N-(5-Bromo-1-methyl-2-oxoindolin-3-ylidene) aniline oxide (3d)

Red-brown solid, 96% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.61 (d, J = 2.0 Hz, 1H), 7.56-7.45 (m, 6H), 6.73 (d, J = 8.4 Hz, 1H), 3.18 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 159.1, 146.3, 140.8, 134.6, 133.8, 131.0, 129.1, 127.6, 123.7, 119.6, 115.8, 109.4, 26.2. HRMS (ESI) calcd for: C₁₅H₁₂BrN₂O₂ [M+H]⁺ 331.0077, found: 331.0078.

Red-brown solid, 89% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.20 (dd, J = 8.4, 2.8 Hz, 1H), 7.56-7.46 (m, 5H), 7.13 (td, J = 8.8, 2.8 Hz, 1H), 6.77 (dd, J = 8.8, 4.0 Hz, 1H), 3.18 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 159.4, 159.1 (d, J =238.9 Hz), 146.3, 138.2, 134.5, 130.9, 129.1, 123.7, 118.9 (d, J =10.0 Hz), 118.3 (d, J =24.3 Hz), 112.6 (d, J =27.3 Hz), 108.4 (d, J =8.1 Hz), 26.2. HRMS (ESI) calcd for: C₁₅H₁₂FN₂O₂ [M+H]⁺ 271.0877, found: 271.0878.

(E)-N-(7-Fluoro-1-methyl-2-oxoindolin-3-ylidene) aniline oxide (3f)¹

Pale red-brown solid, 85% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.29 (dd, J = 7.6, 1.2

Hz, 1H), 7.54-7.45 (m, 5H), 7.18-7.13 (m, 1H), 7.09-7.04 (m, 1H), 3.39 (d, J = 2.4 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 159.2, 147.2(d, J = 242.2 Hz), 146.3, 134.1, 130.9, 129.1, 128.3 (d, J = 9.3 Hz), 123.7, 123.7, 121.0 (d, J = 3.2 Hz), 120.7 (d, J = 4.4 Hz), 120.1 (d, J = 19.3 Hz), 28.7 (d, J = 5.6 Hz). HRMS (ESI) calcd for: C₁₅H₁₂FN₂O₂ [M+H]⁺ 271.0877, found: 271.0878.

(E)-N-(5-Chloro-1-methyl-2-oxoindolin-3-ylidene) aniline oxide (3g)¹

Red-brown solid, 94% yield. ¹H NMR (400 MHz, CDCl₃): δ 8.47 (d, *J* =2.0 Hz, 1H), 7.56-7.45 (m, 5H), 7.39 (dd, *J* =8.4, 2.0 Hz, 1H), 6.78 (d, *J* =8.0 Hz, 1H), 3.18 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 159.2, 146.3, 140.4, 134.0, 131.7, 131.0, 129.0, 128.6, 124.9, 123.7, 119.2, 108.9, 26.2.

(E)-N-(6-Chloro-1-methyl-2-oxoindolin-3-ylidene) aniline oxide (3h)¹

Red-brown solid, 90% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.39 (d, J = 8.0 Hz, 1H), 7.54-7.45 (m, 5H), 7.11 (dd, J = 8.0, 1.6 Hz, 1H), 6.84 (d, J = 1.2 Hz, 1H), 3.17 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 159.5, 146.3, 143.1, 137.8, 133.9, 130.9, 129.1, 125.9, 123.7, 123.0, 116.6, 108.8, 26.2. HRMS (ESI) calcd for: C₁₅H₁₂ClN₂O₂ [M+H]⁺ 287.0582, found: 287.0583.

(E)-N-(6-Bromo-1-methyl-2-oxoindolin-3-ylidene) aniline oxide (3i)

Red-brown solid, 96% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.31 (d, J = 8.0 Hz, 1H), 7.56-7.45 (m, 5H), 7.28 (dd, J = 8.4, 1.6 Hz, 1H), 7.00 (d, J = 1.6 Hz, 1H), 3.17 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 159.3, 146.3, 143.0, 134.0, 130.9, 129.1, 126.0, 126.0, 125.9, 123.7, 117.0, 111.6, 26.2. HRMS (ESI) calcd for: C₁₅H₁₂BrN₂O₂ [M+H]⁺ 331.0077, found: 331.0078.

(E)-N-(1-Benzyl-2-oxoindolin-3-ylidene) aniline oxide (3j)¹

Yellow solid, 89% yield.¹H NMR (400 MHz, CDCl₃) δ 8.50 (dd, *J* = 7.6, 0.4 Hz, 1H), 7.56-7.51 (m, 5H), 7.34-7.25 (m, 6H), 7.12 (td, *J* = 7.6, 0.8 Hz, 1H), 6.76 (d, *J* = 8.0 Hz, 1H), 4.88 (s, 2H). ¹³C NMR (100 MHz, CDCl₃): δ 159.6, 146.5, 141.4, 135.5, 134.5, 132.2, 130.8, 129.1, 128.9, 127.8, 127.4, 125.2, 123.8, 123.2, 118.3, 109.0, 43.8.

(E)-N-(1-Acetyl-2-oxoindolin-3-ylidene) aniline oxide (3k)

Yellow solid, 87% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.65 (dd, *J* = 7.6, 0.8 Hz, 1H), 8.32 (d, *J* = 8.4 Hz, 1H), 7.60-7.45 (m, 6H), 7.33 (td, *J* = 7.6, 0.8 Hz, 1H), 2.60 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 170.4, 159.8, 146.6, 138.2, 133.5, 132.8, 131.0, 129.3, 125.7, 124.3, 123.6, 119.1, 116.2, 26.9. HRMS (ESI) calcd for: C₁₆H₁₂N₂NaO₃ [M+Na]⁺ 303.0740, found: 303.0740.

(E)-N-(1-(tert-Butoxycarbonyl)-2-oxoindolin-3-ylidene) aniline oxide (31)

Yellow solid, 90% yield. ¹H NMR (400 MHz, CDCl₃): δ 8.64 (dd, J = 8.0, 1.2 Hz, 1H), 7.89 (d, J = 8.0 Hz, 1H), 7.55-7.43 (m, 6H), 7.30-7.26 (m, 1H), 1.60 (s, 9H). ¹³C NMR (100 MHz, CDCl₃): δ 157.7, 148.7, 146.6, 138.1, 133.4, 132.6, 130.7, 129.2, 124.8, 124.5, 123.7, 118.7, 114.6, 85.0, 28.1. HRMS (ESI) calcd for: C₁₉H₁₈N₂NaO₄ [M+Na]⁺ 361.1159, found: 361.1159.

(E)-4-Ethyl-N-(1-methyl-2-oxoindolin-3-ylidene) aniline oxide (3m)

Red-brown solid, 91% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.47 (dd, J = 7.6, 0.8 Hz, 1H), 7.43-7.32 (m, 5H), 7.14 (td, J =7.6, 0.8 Hz, 1H), 6.85 (d, J = 7.6 Hz, 1H), 3.19 (s, 3H), 2.74 (q, J = 7.6 Hz, 2H), 1.29 (t, J = 7.6 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 159.6, 147.3, 144.3, 142.0, 134.5, 132.1, 128.4, 125.1, 123.6, 123.1, 118.3, 107.9, 28.8, 26.1, 15.2. HRMS (ESI) calcd for: C₁₇H₁₇N₂O₂ [M+H]⁺ 281.1285, found: 281.1284.

(E)-3-Methyl-N-(1-methyl-2-oxoindolin-3-ylidene) aniline oxide (3n)¹

Red solid, 96% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.46 (dd, J = 7.6, 0.4 Hz, 1H), 7.44-7.33 (m, 5H), 7.14 (td, J = 8.0, 0.4Hz, 1H), 6.84 (d, J = 8.0 Hz, 1H), 3.19 (s, 3H), 2.43 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 159.6, 146.5, 142.1, 139.4, 134.6, 132.2, 131.4, 128.8, 125.1, 124.1, 123.1, 120.8, 118.1, 108.0, 26.1, 21.4.

(E)-3, 5-Dimethyl-N-(1-methyl-2-oxoindolin-3-ylidene) aniline oxide (30)

Red-brown solid, 91% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.46 (d, *J* = 6.8 Hz, 1H), 7.42 (dd, *J* = 7.6, 1.2 Hz, 1H), 7.15-7.12 (m, 2H), 7.06 (s, 2H), 6.84 (d, *J* = 7.6 Hz, 1H), 3.19 (s, 3H), 2.38 (s, 6H). ¹³C NMR (100 MHz, CDCl₃): δ 159.5, 146.5, 142.1, 139.0, 134.5, 132.3, 132.1, 125.1, 123.1, 121.1, 118.1, 107.9, 26.1, 21.3. HRMS (ESI) calcd for: C₁₇H₁₇N₂O₂ [M+H]⁺ 281.1285, found: 281.1287.

(E)-4-Bromo-N-(1-methyl-2-oxoindolin-3-ylidene) aniline oxide (3p)¹

Red solid, 99% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.41 (dd, J = 7.6, 0.4 Hz, 1H), 7.64-7.60 (m, 2H), 7.44-7.34 (m, 3H), 7.12 (td, J = 7.6, 0.8 Hz, 1H), 6.82 (d, J = 8.0 Hz, 1H), 3.17 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 159.4, 145.1, 142.2, 134.8, 132.5, 132.2, 125.5, 125.2, 124.9, 123.2, 118.0, 108.1, 26.1.

(E)-2-Chloro-N-(1-methyl-2-oxoindolin-3-ylidene) aniline oxide (3q)

Red solid, 90% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.48 (dd, J = 7.6, 0.4 Hz, 1H), 7.56-7.41 (m, 5H), 7.17 (td, J = 7.6, 0.8 Hz, 1H), 6.87 (d, J = 7.6 Hz, 1H), 3.18 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 159.3, 144.2, 142.6, 135.9, 132.7, 131.1, 130.5, 128.0, 127.6, 125.5, 125.3, 123.3, 117.3, 108.2, 26.1. HRMS (ESI) calcd for: C₁₅H₁₂ClN₂O₂ [M+H]⁺ 287.0582, found: 287.0583.

(E)-3-Chloro-N-(1-methyl-2-oxoindolin-3-ylidene) aniline oxide (3r)¹

Red-brown solid, 91% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.44 (dd, J = 7.6, 0.8 Hz, 1H), 7.51-7.38 (m, 5H), 7.15 (td, J = 7.6, 0.8 Hz, 1H), 6.86 (d, J = 8.0 Hz, 1H), 3.20 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 159.4, 146.9, 142.3, 134.9, 134.7, 132.6, 130.8, 130.1, 125.3, 124.3, 123.3, 122.1, 117.8, 108.1, 26.1.

(E)-4-Chloro-N-(1-methyl-2-oxoindolin-3-ylidene) aniline oxide (3s)

Red-brown solid, 97% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.44 (dd, J = 7.6, 0.8 Hz, 1H), 7.49-7.42 (m, 5H), 7.15 (td, J = 7.6, 0.8 Hz, 1H), 6.85 (d, J = 7.6 Hz, 1H), 3.19 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 159.5, 144.7, 142.2, 136.7, 134.8, 132.5, 129.3, 125.2, 125.2, 123.3, 118.0, 108.1, 26.1. HRMS (ESI) calcd for: C₁₅H₁₂ClN₂O₂ [M+H]⁺ 287.0582, found: 287.0582.

(E)-3, 5-Dichloro-N-(1-methyl-2-oxoindolin-3-ylidene) aniline oxide (3t)

Red-brown solid, 96% yield. 1H NMR (400 MHz, CDCl₃) δ 8.43 (dd, J = 7.6, 0.4 Hz, 1H), 7.54 (t, J = 1.8 Hz, 1H), 7.48 (td, J = 8.0, 1.2 Hz, 1H), 7.40 (d, J = 2.0 Hz, 2H),

7.17 (td, J = 8.0, 0.8 Hz, 1H), 6.88 (d, J = 7.6 Hz, 1H), 3.23 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 159.3, 147.1, 142.4, 135.4, 135.1, 133.0, 130.8, 125.4, 123.4, 122.8, 117.6, 108.2, 26.2. HRMS (ESI) calcd for: C₁₅H₁₁Cl₂N₂O₂ [M+H]⁺ 321.0192, found: 321.0190.

(E)-2-Cyano-N-(1-methyl-2-oxoindolin-3-ylidene) aniline oxide (3u)

Red-brown solid, 95% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.46 (dd, J = 7.6, 0.4 Hz, 1H), 7.82-7.76 (m, 2H), 7.64 (td, J = 8.0, 1.2 Hz, 1H), 7.55 (dd, J = 8.0, 0.8 Hz, 1H), 7.46 (td, J = 7.6, 1.2 Hz, 1H), 7.16 (td, J = 7.6, 0.8 Hz, 1H), 6.87 (d, J = 7.6 Hz, 1H), 3.18 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 159.3, 147.8, 142.8, 136.1, 134.0, 133.4, 133.2, 130.5, 125.7, 125.0, 123.4, 117.2, 114.7, 108.4, 108.3, 26.1. HRMS (ESI) calcd for: C₁₆H₁₂N₃O₂ [M+H]⁺ 278.0924, found: 278.0923.

(E)-4-(Methoxycarbonyl)-N-(1-methyl-2-oxoindolin-3-ylidene) aniline oxide (3v)

Yellow-brown solid, 99% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.45 (d, J = 7.2 Hz, 1H), 8.19 (dd, J = 6.8, 1.6 Hz, 2H), 7.55-7.53 (m, 2H), 7.44 (td, J = 8.0, 1.2 Hz, 1H), 7.15 (td, J = 8.0, 0.4 Hz, 1H), 6.85 (d, J = 7.6 Hz, 1H), 3.95 (s, 3H), 3.18 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 165.8, 159.4, 149.3, 142.3, 135.0, 132.6, 132.0, 130.6, 125.3, 124.0, 123.3, 117.8, 108.2, 52.5, 26.1. HRMS (ESI) calcd for: C₁₇H₁₅N₂O₄ [M+H]⁺ 311.1026, found: 311.1027.

3. X-ray crystallographic structure of 3u (CCDC 1017177)

EXPERIMENTAL DETAILS

A. Crystal Data

Empirical Formula

C₁₆H₁₁N₃O₂

Formula Weight

Crystal Color, Habit

Crystal Dimensions

Crystal System

Lattice Type

Lattice Parameters

277.28

colorless, prism

0.20 X 0.20 X 0.20 mm

triclinic

Primitive

a = 7.012(4) Å b = 7.844(4) Å c = 12.691(8) Å α = 81.83(4) ° β = 85.86(4) ° γ = 82.76(3) °

 $V = 684.4(7) Å^3$

Space Group	P-1 (#2)
Z value	2
D _{calc}	1.345 g/cm ³
F ₀₀₀	288.00
μ(CuKα)	7.529 cm ⁻¹

C. Structure Solution and Refinement

Structure Solution	Direct Methods (SHELX97)	
Refinement	Full-matrix least-squares on F ²	
Function Minimized	$\Sigma \text{ w} (\text{Fo}^2 - \text{Fc}^2)^2$	
Least Squares Weights	w = 1/ [$\sigma^2(Fo^2)$ + (0.1000 ·	
r)- W	+ 0.0000 · P] /here P = (Max(Fo ² ,0) + 2Fc ²)/3	
$2\theta_{max}$ cutoff	136.2 ⁰	
Anomalous Dispersion	All non-hydrogen atoms	
No. Observations (All reflections)	2435	
No. Variables	190	
Reflection/Parameter Ratio	12.82	
Residuals: R1 (I>2.00 ₀ (I))	0.1344	
Residuals: R (All reflections)	0.1607	
Residuals: wR2 (All reflections)	0.3650	
Goodness of Fit Indicator	2.220	
Max Shift/Error in Final Cycle	0.001	
Maximum peak in Final Diff. Map	0.35 e⁻/Å ³	
Minimum peak in Final Diff. Map	-0.64 e⁻/Å ³	

4. Reference:

1 H.-B. Yang and M. Shi, Org. Biomol. Chem., 2012, 10, 8236.

5. NMR spectra

000.0—

000.0----

000.0----

-26.141

