Electronic Supplementary Information

New solution-processable carbazole derivatives as deep blue emitters for Organic Light-Emitting Diodes

Marta Reig,^a Giedre Bubniene,^a Werther Cambarau,^b Vygintas Jankauskas,^c Vytautas Getautis,^d Emilio Palomares,^{b,e} Eugenia Martínez-Ferrero,^f and Dolores Velasco^{*a}

^a Grup de Materials Orgànics, Institut de Nanociència i Nanotecnologia (IN²UB), Departament de Química Orgànica, Universitat de Barcelona, Martí i Franquès 1, E-08028, Barcelona, Spain.

^b Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology (BIST), Avda. Països Catalans, 16, E-43007, Tarragona, Spain.

^c Department of Solid State Electronics, Vilnius University, Sauletekio al. 9, Vilnius, LT-10222, Lithuania.

^{*d*} Department of Organic Chemistry, Kaunas University of Technology, Radvilenu pl. 19, Kaunas, LT-50254, Lithuania.

^e Catalan Institution for Research and Advance Studies (ICREA), Avda. Lluis Companys 23, E-08010 Barcelona, Spain.

^{*f*} Fundació Eurecat. Av. d'Ernest Lluch 36, Parc Científic i de la Innovació TecnoCampus, E-08302, Mataró, Barcelona, Spain.

* Corresponding author: D. Velasco; E-mail: dvelasco@ub.edu; Fax: +34 93 339 78 78; Tel: +34 93 403 92 60

Content

1. ¹ H NMR, ¹³ C NMR and mass spectra of compounds 1 , 2 , 3a , 3b , 4 and 5	1
2. Cyclic voltammograms of 3a and 3b	9
3. Electric field dependencies of hole drift mobilities of 3a	9
4. Average data of OLED devices based on compound 3a	10
5. Digital picture of an OLED device based on compound 3a	10

Fig. S1 ¹H NMR spectrum (400 MHz, d_6 -acetone) of compound **1**.

Fig. S2 ¹H NMR spectrum (400 MHz, d_6 -acetone) of compound **2**.

Fig. S4 HRMS (ESI-MS) of compound 2.

Fig. S5 ¹H NMR spectrum (400 MHz, d_6 -acetone) of compound **3a**.

Fig. S6 ¹³C NMR spectrum (100 MHz, CDCl₃) of compound **3a**.

Fig. S7 HRMS spectrum (ESI-MS) of compound 3a.

Fig. S8 ¹H NMR spectrum (400 MHz, d_6 -acetone) of compound **3b**.

Fig. S9 ¹³C NMR spectrum (100 MHz, d_6 -acetone) of compound **3b**.

Fig. S10 MS (MALDI-TOF) of compound 3b.

Fig. S11 ¹H NMR spectrum (400 MHz, d_6 -acetone) of compound **4**.

Fig. S12 ¹³C NMR spectrum (100 MHz, d_6 -acetone) of compound **4**.

Fig. S13 HRMS spectrum (ESI-MS) of compound 4.

Fig. S14 ¹H NMR spectrum (400 MHz, d_6 -acetone) of compound **5**.

Fig. S15 ¹³C NMR (100 MHz, d_6 -acetone) of compound **5**.

Fig. S16 HRMS (ESI-MS) of compound 5.

Fig. S17 Cyclic voltammograms of compounds a) **3a** and b) **3b** in dichloromethane solutions with Ag/AgCl as the reference electrode.

Fig. S18 Electric field dependencies of hole drift mobilities of the amorphous films of 3a.

Table	S1	Average	values	(over	а	population	of	8	diodes	each)	of	OLED	devices	based	on
compo	oun	d 3a.													

solvent ^a	d	Vt	L _{max}	$\eta_{ m c}$
	(nm) ^ь	(V) ^c	(cd/m²) ^d	(cd/A) ^e
СВ	25	2.82	30.47	0.07
CB	30	2.70	34.68	0.07
CB	40	2.92	37.21	0.07
CB	50	3.30	37.23	0.15
CB	55	3.59	29.13	0.05
DCM	25	2.63	21.69	0.02
THF	25	2.60	25.94	0.03

^a Solvent used for preparing the **3a** based layer by spin-coating (CB: chlorobenzene, DCM: dichloromethane, THF: tetrahydrofuran). ^b Thickness of the **3a** based layer measured with a profilometer. ^c Turn-on-voltage defined as voltage corresponding to a luminance of 0.1 cd/m². ^d Maximum luminance. ^e Maximum current efficiency.

Fig. S19 Digital picture of an OLED device based on compound 3a (luminance around 10 cd/m² at 3.5 V).

