Supporting Information for:

Theoretical exploration of Seleno and Tellurophenols as a promising alternative to sulfur ligands in the anchoring to gold (111) materials

Sebastián Miranda-Rojas^{1*}, Richard Salazar-Molina^{2*}, Johannes Kästner³, Ramiro Arratia-Pérez⁴ and Fernando Mendizábal²

¹Chemical Processes and Catalysis (CPC), Departamento de Ciencias Químicas, Facultad de Ciencias Exactas, Universidad Andres Bello, Avenida República 275, Santiago, Chile.

²Departamento de Química, Facultad de Ciencias, Universidad de Chile, P.O. Box 653, Las Palmeras 3425, Ñuñoa, Santiago, Chile.

³Institut für Theoretische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany.

⁴CENAP, Centro de Nanociencias Aplicadas, Doctorado en Fisicoquímica Molecular, Relativistic Molecular Physics (ReMoPh) Group, Universidad Andres Bello, República 275, Santiago, Chile.

Author Email Address: sebastian.miranda@unab.cl

Au ₄₂ -Selenophenol (SeH)	D _{top}	D _{C-Se}	θ	ω
Au ₄₂ -SeHC ₆ H ₄ NH ₂	2.70	1.93	87.6	95.3
Au ₄₂ -SeHC ₆ H ₄ OCH ₃	2.69	1.93	88.4	94.0
Au ₄₂ -SeHC ₆ H ₄ CH ₃	2.57	1.89	88.5	90.9
Au ₄₂ -SeHC ₆ H ₅	2.70	1.93	90.3	93.3
Au ₄₂ -SeHC ₆ H ₄ F	2.68	1.93	90.3	94.2
Au ₄₂ -SeHC ₆ H ₄ Cl	2.72	1.93	88.3	95.9
Au ₄₂ -SeHC ₆ H ₄ OCOCH ₃	2.70	1.93	90.6	93.1
Au ₄₂ -SeHC ₆ H ₄ CF ₃	2.70	1.93	91.1	94.3
Au ₄₂ -SeHC ₆ H ₄ CN	2.60	1.91	86.9	93.2
Au ₄₂ -SeHC ₆ H ₄ NO ₂	2.75	1.92	88.6	96.7

 Table S1. Selected geometric parameters for the *para* substituted selenophenol-gold complexes^a

 (distances in Å and angles in deg).

Au ₄₂ -Telurophenol (TeH)	D _{top}	D _{C-Te}	θ	ω
Au ₄₂ -TeHC ₆ H ₄ NH ₂	2.77	2.12	87.24	95.83
Au ₄₂ -TeHC ₆ H ₄ OCH ₃	2.76	2.12	88.82	93.08
Au ₄₂ -TeHC ₆ H ₄ CH ₃	2.75	2.12	88.83	91.21
Au ₄₂ -TeHC ₆ H ₅	2.77	2.13	89.50	93.54
Au ₄₂ -TeHC ₆ H ₄ F	2.75	2.13	89.50	93.78
Au ₄₂ -TeHC ₆ H ₄ Cl	2.77	2.12	87.97	95.28
Au ₄₂ -TeHC ₆ H ₄ OCOCH ₃	2.76	2.13	89.47	93.87
Au ₄₂ -TeHC ₆ H ₄ CF ₃	2.76	2.13	89.86	94.90
Au ₄₂ -TeHC ₆ H ₄ CN	2.77	2.12	87.69	91.56
Au ₄₂ -TeHC ₆ H ₄ NO ₂	2.79	2.12	88.11	96.98

Table S2. Selected geometric parameters for the *para* substituted telurophenol-gold complexes^a (distances in Å and angles in deg).

Au ₄₂ -Selenophenolate (Se ⁻)	D ₁	D ₂	D _{C-Se}	α	β
Au ₄₂ -SeC ₆ H ₄ NH ₂	2.61	2.59	1.96	67.7	89.9
Au ₄₂ -SeC ₆ H ₄ OCH ₃	2.60	2.63	1.96	67.3	88.1
Au ₄₂ -SeC ₆ H ₄ CH ₃	2.60	2.60	1.97	67.6	90.3
Au ₄₂ -SeC ₆ H ₅	2.62	2.59	1.97	67.5	90.7
Au ₄₂ -SeC ₆ H ₄ F	2.61	2.59	1.97	67.6	88.7
Au ₄₂ -SeC ₆ H ₄ Cl	2.62	2.60	1.97	67.4	89.3
Au ₄₂ -SeC ₆ H ₄ OCOCH ₃	2.63	2.60	1.97	67.3	90.2
Au ₄₂ -SeC ₆ H ₄ CF ₃	2.63	2.60	1.96	67.4	88.2
Au ₄₂ -SeC ₆ H ₄ CN	2.62	2.61	1.96	67.3	92.1
Au ₄₂ -SeC ₆ H ₄ NO ₂	2.64	2.60	1.96	67.0	89.1

Table S3. Selected geometric parameters for the anionic *para* substituted selenophenolate-gold complexes^a (distances in Å and angles in deg).

Au ₄₂ -Telurophenolate (Te ⁻)	D ₁	D ₂	D _{C-Te}	α	β
Au ₄₂ -TeC ₆ H ₄ NH ₂	2.70	2.72	2.16	64,69	87.40
Au ₄₂ -TeC ₆ H ₄ OCH ₃	2.69	2.73	2.17	64,55	85.16
Au ₄₂ -TeC ₆ H ₄ CH ₃	2.70	2.72	2.17	64,65	88.74
Au ₄₂ -TeC ₆ H ₅	2.70	2.71	2.17	64,70	89.51
Au ₄₂ -TeC ₆ H ₄ F	2.70	2.71	2.17	64,80	86.06
Au ₄₂ -TeC ₆ H ₄ Cl	2.70	2.71	2.17	64,71	85.19
Au ₄₂ -TeC ₆ H ₄ OCOCH ₃	2.70	2.71	2.17	64,66	88.74
Au ₄₂ -TeC ₆ H ₄ CF ₃	2.68	2.71	2.17	65,03	80.81
Au ₄₂ -TeC ₆ H ₄ CN	2.71	2.72	2.17	64,54	92.22
Au ₄₂ -TeC ₆ H ₄ NO ₂	2.70	2.71	2.17	64,66	85.42

Table S4. Selected geometric parameters for the anionic *para* substituted telurophenolates-gold complexes^a (distances in Å and angles in deg).

Au ₄₂ -Selenophenolate (Se•)	D ₁	D ₂	D _{C-Se}	α	β
Au ₄₂ -SeC ₆ H ₄ NH ₂	2.58	2.60	1.96	68.0	90.0
Au ₄₂ -SeC ₆ H ₄ OCH ₃	2.59	2.62	1.96	67.4	87.9
Au ₄₂ -SeC ₆ H ₄ CH ₃	2.60	2.58	1.97	68.0	90.2
Au ₄₂ -SeC ₆ H ₅	2.59	2.59	1.97	67.9	89.6
Au ₄₂ -SeC ₆ H ₄ F	2.59	2.59	1.97	67.9	88.6
Au ₄₂ -SeC ₆ H ₄ Cl	2.60	2.60	1.97	67.7	89.1
Au ₄₂ -SeC ₆ H ₄ OCOCH ₃	2.60	2.60	1.97	67.7	89.5
Au ₄₂ -SeC ₆ H ₄ CF ₃	2.60	2.60	1.97	67.7	87.1
Au ₄₂ -SeC ₆ H ₄ CN	2.62	2.58	1.97	67.6	90.7
Au ₄₂ -SeC ₆ H ₄ NO ₂	2.60	2.60	1.96	67.5	87.6

Table S5. Selected geometric parameters for the radical *para* substituted selenophenolate-gold complexes^a (distances in Å and angles in deg).

Au ₄₂ -Telurophenolate (Te [•])	D ₁	D ₂	D _{C-Te}	α	β
Au ₄₂ -TeC ₆ H ₄ NH ₂	2.69	2.72	2.16	64.73	89.46
Au ₄₂ -TeC ₆ H ₄ OCH ₃	2.70	2.71	2.17	64.73	88.00
Au ₄₂ -TeC ₆ H ₄ CH ₃	2.69	2.72	2.17	64.70	88.89
Au ₄₂ -TeC ₆ H ₅	2.70	2.71	2.17	64.76	89.03
Au ₄₂ -TeC ₆ H ₄ F	2.69	2.71	2.17	64.80	86.53
Au ₄₂ -TeC ₆ H ₄ Cl	2.70	2.71	2.17	64.68	86.99
Au ₄₂ -TeC ₆ H ₄ OCOCH ₃	2.70	2.72	2.17	64.68	88.36
Au ₄₂ -TeC ₆ H ₄ CF ₃	2.70	2.72	2.17	64.67	82.37
Au ₄₂ -TeC ₆ H ₄ CN	2.69	2.73	2.17	64.60	89.25
Au ₄₂ -TeC ₆ H ₄ NO ₂	2.71	2.72	2.17	64.52	83.53

Table S6. Selected geometric parameters for the radical *para* substituted telurophenolates-gold complexes^a (distances in Å and angles in deg).

Figure S1. Graphical representation of the non-covalent interactions between the radical ligands (carbon-grey, nitrogen-blue, hydrogen-white, cyan-chalcogen spheres) and the gold surface (yellow spheres). At the left side there is the ligand with the strongest interaction strength (-OCH₃) and at the right side of the picture the ligand with the weakest (-NH₂).